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PREFACE 

This book is the first volume of research papers presented at the Fundamental Science 
Congress 2017 at Universiti Putra Malaysia on November 21-22, 2017.The congress 
served as a platform for researchers from different parts of Malaysia to share their 
knowledge and initiate collaboration among themselves. This book presents the latest 
findings in various fields of applied mathematics generally and numerical analysis and 
fluid dynamics specifically.  

 
Chapter 2 comprises paper on the new four-stage third-order trigonometrically fitted 
explicit modified Runge-Kutta type (MRKT) methods which are called TFRKTGG3. 
TFRKTGG3 trigonometrically-fitted explicit MRKT method is used to solve general 
𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′) with oscillating solutions involving trigonometric functions.   

 
Chapter 3 presented paper related to the four-stage fourth-order Runge–Kutta–Nyström 
method (RKN) for solving second-order two-point boundary value problem (BVP) with 
Dirichlet condition. Numerical results are compared with the existing Runge-Kutta (RK) 
method and have clearly shown the advantage and the efficiency of the RKN. 

  
Chapter 4 consists of a paper on 2-point diagonally implicit multistep block method of 

order four for solving first order ordinary differential equations. The stability region of the 

proposed method will be discussed and numerical examples are given to demonstrate 

the performance of the method. 

 

In Chapter 5, numerical method for volterra integro-differential equation (VIDE) with 

implicit multistep block method (IMBM) is discussed. Preliminary results from the 

application of the implicit multistep block method are given and the comparisons are made 

with the existing methods in order to test the efficiency of the proposed method. 

 

Chapter 6 contains paper related to numerical computation for solving boundary value 

problems with robin conditions. The numerical results are presented and compared with 

the exact solutions, and also with the solutions of the establish Runge-Kutta order four 

method. 

 

Chapter 7 discusses on hybrid one–step block method with one-off step for solving first 

order volterra integro-differential equations (VIDE). The hybrid one-step block method 

together with numerical quadrature rules are applied for solving the second kind of VIDE 

using constant step size. 

 

Chapter 8 comprises paper on the development new two derivative Runge-Kutta-Nystr�̈�m 

(TDRKN) method for solving 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′). The results obtained of numerical 
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calculations showed that the new TDRKN method is more efficient than the standard 

explicit RKN methods for the general second order ordinary differential equations of the 

same algebraic order. 

 

Chapter 9 presented paper related to MHD boundary layer flow of carreau fluid over a 

stretching surface with suction and thermal radiation. The effect of non-dimensional 

parameters such as the suction parameter, the Prandtl number and the Biot number on 

velocity, temperature, local skin friction and local Nusselt number are discussed. 

 

Chapter 10 consists of a paper on heat transfer characteristics of MHD stagnation-point 

flow of carreau fluid over a shrinking sheet. Numerical results for different values of 

governing parameters on the heat transfer characteristics are presented and discussed. 
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CHAPTER 1 

INTRODUCTION 

This multidisciplinary book on latest discoveries in various fields of applied 

mathematics ranges from numerical analysis to fluid dynamics. 

Numerical analysis is one of important branch of mathematics which creates or 

modifies, analyzes and implements algorithms with numerical approximation for solving 

problems of mathematical analysis. This field of research comprises many subdisciplines 

such as solving systems of equations whether linear or not, solving differential equations 

whether ordinary or partial, solving eigenvalues or singular value problems, and many 

more. Our choice of topics is governed by what is most needed in science and 

engineering, as well as in applied physical science. Mathematical models are then central, 

with differential equations constituting the most frequent type of models. Consequently, 

the numerical focus in this book is on differential equations. There is also a chapter on 

solving boundary value problems and volterra integro-differential equation. We remark 

that the book is deliberately brief on numerical analysis. This is because our focus is on 

analysing stability, convergence of the method, implementing numerical algorithms, and 

also the readers must be confident about the basic ideas of the numerical approximations 

involved. Among the famous methods covered in this book include one-step block 

method, multistep block method, Runge-Kutta type method and Runge-Kutta-Nyström 

method for solving numerous mathematical problems. 

Whilst fluid dynamics which is a subdiscipline of fluid mechanics offers a 

methodical practical structure. It describes the flow of fluids ie. liquids and gases. The 

deduction of the boundary layer equations is one of the most important advances in fluid 

dynamics. Using an order of magnitude analysis, the well-known governing Navier–

Stokes equations of viscous fluid flow can be greatly simplified within the boundary layer. 

Notably, the characteristic of the partial differential equations (PDE) becomes parabolic, 

rather than the elliptical form of the full Navier–Stokes equations. This greatly simplifies 

the solution of the equations. By making the boundary layer approximation, the flow is 

divided into an inviscid portion (which is easy to solve by a number of methods) and the 

boundary layer, which is governed by an easier to solve PDE. The continuity and Navier–

Stokes equations for a two-dimensional steady incompressible flow in Cartesian 

coordinates. The governing partial differential equations are reduced into a system of 

ordinary differential equations using a similarity transformation, which are then solved 

numerically. 

The solution to a fluid dynamics problem commonly involves the computation of 

several properties of fluid such as flow velocity, mass and temperature. Non-dimensional 

governing parameters such as the stretching/shrinking parameter, the suction parameter, 

the radiation parameter, the magnetic parameter, and the power law index will usually 

affect on certain fluid properties. Some findings show that the presence of magnetic field 

causes the fluid velocity to decrease and the temperature to increase, the power law index 

https://en.wikipedia.org/wiki/Order_of_magnitude_analysis
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Viscous
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Characteristic_polynomial#Characteristic_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Incompressible_flow
https://en.wikipedia.org/wiki/Cartesian_coordinates
https://en.wikipedia.org/wiki/Cartesian_coordinates
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enhances the boundary layer separation, whilst the suction parameter delays the 

boundary layer separation and many other interesting observations. 

These fields under applied mathematics naturally find application in all fields of 

engineering, the physical sciences, the life sciences, social sciences, medicine, business 

and even the arts have adopted elements of scientific computations. Hence, this book will 

be of interest to not only practitioners in the fields of mathematics but to all other experts 

from other fields. 
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CHAPTER 2  

AN EXPLICIT TRIGONOMETRICALLY-FITTED MODIFIED RUNGE-KUTTA TYPE 

METHOD FOR SOLVING  𝒚′′′(𝒙) = 𝒇(𝒙, 𝒚, 𝒚′, 𝒚′′) WITH OSCILLATING SOLUTIONS 

Abstract: 
In this paper , we derive TFRKTGG3 trigonometrically-fitted explicit modified Runge- 
Kutta type (MRKT) method for solving general 𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′) with oscillating 
solutions. These methods  are constructed which  exactly   integrates initial  value  
problems  whose  solutions  are linear combinations of the set functions 𝑒𝑥𝑝(𝑤𝑥) and 
𝑒𝑥𝑝(−𝑤𝑥)   for exponentially-fitted and sin(𝑤x) and cos(𝑤x) for trigonometrically fitted 

with 𝑤 ∈ 𝑅 the principal frequency of the problem and the frequency will be used to 
raise the accuracy of the methods. The new four-stage third-order trigonometrically 
fitted explicit MRKT methods are called TFRKTGG3 for solving initial value problems 
whose solutions involving trigonometric functions. The numerical results indicate that 
trigonometrically fitted explicit modified Runge-Kutta type methods are more efficient 
than existing methods in the literature. 
 
Keywords: Exponentially-fitted method, Trigonometrically-fitted method, Modified 
Runge-Kutta type methods, Initial value problems, Third-order ODEs. 
 
 

1. Introduction 

This study deals with trigonometrically-fitted modified Runge-Kutta type methods for 
solving general third-order ordinary differential equations (ODEs) with oscillating solutions  
 

𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥)),  

𝑦(𝑥0) = 𝑦0,  𝑦′(𝑥0) = 𝑦0
′ ,  𝑦′′(𝑥0) = 𝑦0

′′ , 𝑥 ≥ 𝑥0       (1)  

 
Many researchers construct an explicit trigonometrically fitted Runge-Kutta 

methods for solving first-order and second-order ordinary differential equations with 
oscillating solutions. Such as, Sakas et al. [3] develop a fifth algebraic order 
trigonometrically-fitted modified Runge-Kutta Zonneveld method for the numerical 
solution of orbital problems. Vanden Berghe et al. [4] construct an exponentially-fitted 
Runge-Kutta methods. Yang et al. [5] construct a trigonometrically-fitted ARKN methods 
for perturbed oscillators and Demba et al. [6] construct an explicit trigonometrically-fitted 
Runge-Kutta-Nystrom (ETFRKN) method using Simos technique. In addition, Yanwei 
Zhang et al. [7] develop a new trigonometrically-fitted two-derivative Runge-Kutta method. 
While, Simos [8] extend an exponentially-fitted Runge-Kutta methods for the numerical 
solution of the Schrodinger equation and related problems. Kalogiratou et al. [9] construct 
a trigonometrically- and exponentially-fitted Runge-Kutta-Nystrom methods for the 
numerical solution of the Schrodinger equation and related problems a method of eighth 
algebraic order.  
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In this paper, we construct trigonometrically-fitted  explicit modified Runge-Kutta 
type three-stage third-order TFRKG3 method. Section 2 provides exponentially-fitted and 
trigonometrically-fitted modified Runge-Kutta type method. In section 3, The effectiveness 
of the new method to compared with existing method. The conclusion is given in Section 
4. 

 

2. Exponentially-fitted and trigonometrically-fitted modified Runge-Kutta (MRKT) 
type method 

In this Section, we construct exponentially-fitted and trigonometrically-fitted MRKT 

methods. In this case, it is absolutely necessary to insert the extra parameter 𝛾𝑖 of 
produce the MRKT method.  
 

In order to construct the exponentially-fitted and trigonometrically-fitted MRKT 

method we introduce an extra 𝛾𝑖 at each stage and the modified Runge-Kutta (MRKT) 
type method is  

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ +

ℎ2

2
𝑦𝑛

′′ + ℎ3 ∑𝑏𝑖

𝑠

𝑖=1

𝑘𝑖, (2) 

 𝑦𝑛+1
′ = 𝑦𝑛

′ + ℎ𝑦𝑛
′′ + ℎ2 ∑𝑏𝑖

′

𝑠

𝑖=1

𝑘𝑖 , (3) 

 𝑦𝑛+1
′′ = 𝑦𝑛

′′ + ℎ∑ 𝑏𝑖
′′

𝑠

𝑖=1

𝑘𝑖 . (4) 

where  
 𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛, 𝑦𝑛 

′ , 𝑦𝑛
′′), (5) 

𝑘𝑖 = 𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ𝑐𝑖𝑦𝑛
′ +

ℎ2

2
𝑐𝑖

2𝑦𝑛
′′ + ℎ3 ∑𝑎𝑖𝑗

𝑖−1

𝑗=1

𝑘𝑗 , 

 𝑦𝑛
′ + ℎ𝑐𝑖𝑦𝑛

′′ + ℎ2 ∑�̂�𝑖𝑗

𝑖−1

𝑗=1

𝑘𝑗 , 𝛾�̂�𝑦𝑛
′′ + ℎ ∑�̄�𝑖𝑗

𝑖−1

𝑗=1

𝑘𝑗) (6) 

for 𝑖 = 2,3, . . . , 𝑠.  
The parameters 𝑐𝑖, 𝑎𝑖𝑗,   �̂�𝑖𝑗, ,   �̄�𝑖𝑗 , 𝑏𝑖, 𝑏𝑖

′, 𝑏𝑖
′′ and  𝛾𝑖  for 𝑖 = 1,2, . . . , 𝑠 and 𝑗 = 1,2, . . . , 𝑠 are 

assumed to be real. If 𝑎𝑖𝑗 = 0 , �̂�𝑖𝑗 = 0 and �̄�𝑖𝑗 = 0 for 𝑖 ≤ 𝑗, it is an explicit method 

otherwise it is an implicit method. 
For the exponentially-fitted method we want to integrate 𝑒𝑥𝑝(𝑤𝑥), 𝑒𝑥𝑝(−𝑤𝑥) exactly  at 
each stage as follows:  

 𝑒±𝑣 = 𝛾�̂� ± ℎ ∑�̄�𝑖𝑗

𝑠

𝑗=1

𝑒±𝑐𝑗𝑣, (7) 

and  the following that corresponds to y , 𝑦′ and 𝑦′′:  
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 𝑒±𝑣 = 1 ± 𝑣 +
1

2
𝑣2 ± 𝑣3 ∑𝑏𝑖

𝑠

𝑖=1

𝑒±𝑐𝑖𝑣, (8) 

 𝑒±𝑣 = 1 ± 𝑣 + 𝑣2 ∑𝑏𝑖
′

𝑠

𝑖=1

𝑒±𝑐𝑖𝑣, (9) 

 𝑒±𝑣 = 1 ± 𝑣 ∑𝑏𝑖
′′

𝑠

𝑖=1

𝑒±𝑐𝑖𝑣. (10) 

For the trigonometrically-fitted method we want to integrate exactly sin (𝑤𝑥), cos (𝑤𝑥),  at 
each stage to have: 

 𝑐𝑜𝑠 ( 𝑣𝑐𝑖) = 𝛾�̂� − 𝑣 ∑�̄�𝑖𝑗

𝑖−1

𝑗=1

𝑠𝑖𝑛 ( 𝑣𝑐𝑗), (11) 

 𝑠𝑖𝑛 ( 𝑣𝑐𝑖) = 𝑣 ∑�̄�𝑖𝑗

𝑖−1

𝑗=1

𝑐𝑜𝑠 (𝑣𝑐𝑗) ,  𝑖 = 1, . . . , 𝑠, (12) 

and the following that corresponds to y , 𝑦′ and 𝑦′′:  

 𝑐𝑜𝑠 (𝑣) = 1 −
1

2
 𝑣2 + 𝑣3 ∑𝑏𝑖

𝑠

𝑖=1

𝑠𝑖𝑛 (𝑣𝑐𝑖), (13) 

 𝑠𝑖𝑛 (𝑣) = 𝑣 − 𝑣3 ∑𝑏𝑖

𝑠

𝑖=1

𝑐𝑜𝑠 (𝑣𝑐𝑖), (14) 

 𝑐𝑜𝑠 (𝑣) = 1 − 𝑣2 ∑𝑏𝑖
′

𝑠

𝑖=1

𝑐𝑜𝑠 (𝑣𝑐𝑖), (15) 

 𝑠𝑖𝑛 (𝑣) = 𝑣 − 𝑣2 ∑𝑏𝑖
′

𝑠

𝑖=1

𝑠𝑖𝑛 (𝑣𝑐𝑖), (16) 

 𝑐𝑜𝑠 (𝑣) = 1 − 𝑣 ∑𝑏𝑖
′′

𝑠

𝑖=1

𝑠𝑖𝑛 (𝑣𝑐𝑖), (17) 

 𝑠𝑖𝑛 (𝑣) = 𝑣 ∑𝑏𝑖
′′

𝑠

𝑖=1

𝑐𝑜𝑠 (𝑣𝑐𝑖). (18) 

Then, solving Equatios (11) into (12), we have: 

 �̄�𝑖,𝑖−1 =
𝑠𝑖𝑛 (𝑣𝑐𝑖) − 𝑣 ∑ �̄�𝑖,𝑗

𝑖−2
𝑗=1 𝑐𝑜𝑠 (𝑣𝑐𝑗)

𝑣 𝑐𝑜𝑠 (𝑣𝑐𝑖−1)
, (19) 

 𝛾�̂� = 𝑐𝑜𝑠 (𝑣𝑐𝑖) + 𝑣 ∑�̄�𝑖,𝑗

𝑖−1

𝑗=1

𝑠𝑖𝑛 (𝑣𝑐𝑗). (20) 

For  𝑖 = 2, . . . , 𝑠. 
Referring to the following the third-order with three stages method developed by Fawzi 
et al. [11] 
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𝑐1 = 0,𝑐2 =
2

3
,𝑐3 =

2

3
,𝑎21 =

7

10
,𝑎31 =

28

25
, 𝑎32 =

28

25
,�̄�21 =

17

100
,�̄�31 =

53

225
,�̄�32 = −

17

100
, 

𝑏3 = 0,𝑏3
′ = 0,𝑏3

′′ = −
3

8
 . 

 

Solving Equations (19)-(20) with the above coefficients and leting �̂�21 , �̂�32 , 𝛾2 and 𝛾3 as 
free parameters yields:  

�̂�21 =
𝑠𝑖𝑛 (

2 𝑣

3
)

𝑣
, �̂�32 =

𝑠𝑖𝑛 (
2 𝑣

3
)−

4 𝑣

3

𝑣 𝑐𝑜𝑠 (
2 𝑣

3
)

, 𝛾2 = 𝑐𝑜𝑠 (
2 𝑣

3
), 𝛾1̂ = 1,𝛾3 = 𝑐𝑜𝑠 (

2 𝑣

3
) −

2 𝑣

3
𝑠𝑖𝑛 (

2 𝑣

3
). 

 
Then, solving Equations (15)-(18)  with the above coefficients yields: 

𝑏1

= −
1

2
 
2  𝑐𝑜𝑠 (

2 𝑣
3 ) 𝑐𝑜𝑠 (𝑣) − 2  𝑐𝑜𝑠 (

2 𝑣
3 ) + 𝑐𝑜𝑠 (

2 𝑣
3 ) 𝑣2 + 2  𝑠𝑖𝑛 (𝑣) 𝑠𝑖𝑛 (

2 𝑣
3 ) − 2 𝑣 𝑠𝑖𝑛 (

2 𝑣
3 )

𝑣3 𝑠𝑖𝑛 (
2 𝑣
3 )

, 

 

𝑏2 = −
𝑠𝑖𝑛 (𝑣) − 𝑣

𝑣2 𝑠𝑖𝑛 ((
2 𝑣
3 )

, 

𝑏1
′ =

𝑐𝑜𝑠 (
2 𝑣

3
) 𝑠𝑖𝑛 (𝑣)−𝑣 𝑐𝑜𝑠 (

2 𝑣

3
)−𝑐𝑜𝑠 (𝑣) 𝑠𝑖𝑛 (

2 𝑣

3
)+𝑠𝑖𝑛 (

2 𝑣

3
)

𝑣2 𝑠𝑖𝑛 (
2 𝑣

3
)

, 

𝑏2
′ =−

𝑠𝑖𝑛 (𝑣)−𝑣

𝑣2 𝑠𝑖𝑛 ((
2 𝑣

3
)
 , 

 

𝑏1
′′ =

𝑐𝑜𝑠 (
2 𝑣
3 ) 𝑐𝑜𝑠 (𝑣) − 𝑐𝑜𝑠 (

2 𝑣
3 ) + 𝑠𝑖𝑛 (𝑣) 𝑠𝑖𝑛 (

2 𝑣
3 )

𝑣 𝑠𝑖𝑛 (
2 𝑣
3 )

 , 

𝑏2
′′ = −

−1−
2 𝑣

8
 𝑣 𝑠𝑖𝑛 (

2 𝑣

3
)+𝑐𝑜𝑠 (𝑣)

𝑣 𝑠𝑖𝑛 (
2 𝑣

3
)

. 

 
This leads to our proposed method explicit trigonometrically-fitted TFRKGG3 given by 
the corresponding Taylor series expansion of the solution as follows: 
 

𝑏1 =
5

48
+

13

4320
 𝑣2 +

829

6531840
 𝑣4 +

9941

1763596800
 𝑣6 +

25243

99769190400
 𝑣8 +

586059827

51477909170688000
 𝑣10 + ⋯,  

𝑏2 =
1

16
+

11

4320
 𝑣2 +

803

6531840
 𝑣4 +

9859

1763596800
 𝑣6 +

176339

698384332800
 𝑣8 +

53250863

4679809924608000
 𝑣10 + ⋯,  

𝑏1
′ =

1

4
+

17

2160
 𝑣2 +

55

163296
 𝑣4 +

13231

881798400
 𝑣6 +

117673

174596083200
 𝑣8 +

780698467

25738954585344000
 𝑣10 + ⋯,  

𝑏2
′ =

1

4
+

13

2160
 𝑣2 +

271

816480
 𝑣4 +

1877

125971200
 𝑣6 +

23497

34919216640
 𝑣8 +

780383783

25738954585344000
 𝑣10 + ⋯,  

 

𝑏1
′′ =

1

4
+

1

144
 𝑣2 +

11

38880
 𝑣4 +

731

58786560
 𝑣6 +

589

1058158080
 𝑣8 +

471953

18856376985600
 𝑣10 + ⋯,  

 

𝑏2
′′ =

9

8
−

1

144
 𝑣2 +

13

38880
 𝑣4 +

709

58786560
 𝑣6 +

587

1058158080
 𝑣8 +

471487

18856376985600
 𝑣10 + ⋯,  
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�̂�21 =
2

3
−

4

81
 𝑣2 +

4

3645
 𝑣4 −

8

688905
 𝑣6 +

4

55801305
 𝑣8 −

8

27621645975
 𝑣10 + ⋯,  

 

�̂�32 = −
2

3
−

16

81
 𝑣2 −

136

3645
 𝑣4 −

1552

229635
 𝑣6 −

67976

55801305
 𝑣8 −

1212272

5524329195
 𝑣10 + ⋯,  

  

𝛾2 = 1 −
2

9
 𝑣2 +

2

243
 𝑣4 −

4

32805
 𝑣6 +

2

2066715
 𝑣8 −

4

837019575
 𝑣10 + ⋯,  

 

𝛾3 = 1 −
2

3
 𝑣2 +

10

243
 𝑣4 −

28

32805
 𝑣6 +

2

229635
 𝑣8 −

44

837019575
 𝑣10 + ⋯. 

 
 
 
3. Numerical Results 

In this Section, we apply the proposed method to  𝑦′′′ = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′) ordinary 
differential equations (ODEs) problems. The numerical results of our third-order four-
stages TFRKTGG method is tabulated in table 1. The numerical results for TFRKTGG3 
is compared with other existing RK methods of the same order. The methods chosen in 
the numerical experiments are as follows: 
 
• TFRKTGG3: the four-stage third-order TFRKTGG method derived in this paper. 
• RKTGG3: the three-stage third-order RKTGG type method given by Fawzi in [11]. 
• RK3: the three-stage third-order RK method given by Dormand [13].  
• RK3M: the six-stage third-order RK method given in Dormand [13]. 
 
The problem tested is given as follows: 

𝑦1
′′′(𝑥) = −

1

8
𝑦1

′′(𝑥) + 𝑠𝑖𝑛 ( 2 𝑥),  𝑦1(0) =
32

257
 , 𝑦′

1
(0) = −

4

257
 , 𝑦′′

1
(0) = −

128

257
,  

𝑦2
′′′(𝑥) = −

1

64
𝑦2

′′(𝑥) − 𝑐𝑜𝑠 ( 2 𝑥), 𝑦2(0) =
16

16385
,   𝑦′

2
(0) =

4096

16385
 , 

𝑦′′
2
(0) = −

64

16385
. 

𝑦3
′′′(𝑥) = −

1

27
𝑦3

′′(𝑥) − 𝑠𝑖𝑛 ( 2 𝑥), 𝑦3(0) = −
729

5834
 , 𝑦′

3
(0) =

27

5834
 , 𝑦′′

3
(0) =

1458

2917
. 

 Hence, the exact solution are  

𝑦1(𝑥) =
32

257
 𝑐𝑜𝑠 ( 2 𝑥) −

2

257
 𝑠𝑖𝑛 ( 2 𝑥), 

𝑦2(𝑥) =
16

16385
 𝑐𝑜𝑠 ( 2 𝑥) +

2048

16385
 𝑠𝑖𝑛 ( 2 𝑥), 

𝑦3(𝑥) = −
729

5834
 𝑐𝑜𝑠 ( 2 𝑥) +

27

11668
 𝑠𝑖𝑛 ( 2 𝑥), Estimated frequency, 𝑤 = 2.  

 
Table 1: Numerical results for the problem for TFRKTGG3 method 

 
h methods 𝑥 =100 𝑥 =1000 𝑥 =10000  

 TFRKTGG3 9.761996(−8) 1.893467(−6) 1.665407(−5)  
0.01 RKTGG3 5.859742(−5) 1.109357(−3) 1.177915(−2)  
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 Rk3 4.393693(−5) 8.319551(−4) 8.835066(−3)  
 RK3M 1.586735(−3) 1.586735(−3) 2.403712(−3) 
     

 TFRKTGG3 3.812524(−6) 7.223868(−5) 7.697985(−4)  
0.025 RKTGG3 9.156610(−4) 1.733571(−2) 1.840108(−1)  

 Rk3 6.865244(−4) 1.300085(−2) 1.380068(−1)  
 RK3M 4.762779(−3) 4.776506(−3) 3.192964(−2)  
     

 TRKTGG3 6.105092(−5) 1.156301(−3) 1.227456(−2)  
0.05 RKTGG3 1.835273(−3) 3.467555(−2) 3.680322(−1)  

 Rk3 5.497772(−3) 1.040294(−1) 1.104297(0)  
 RK3M 1.356709(−2) 1.617916(−2) 2.562791(−1)  

 

 TFRKTGG3 3.091299(−4) 5.857133(−3) 6.217701(−2)  
0.075 RKTGG3 6.194845(−3) 1.170405(−1) 1.242222(0)  

 Rk3 1.855978(−2) 3.512124(−1) 3.728214(0)  
 RK3M 2.543279(−2) 6.152245(−2) 8.722326(−1) 

 

 
 

 
The efficiency curve for TFRKTGG3 method with 𝑥𝑒𝑛𝑑 = 10000  and ℎ =
 0.01 ,0.025 ,0.05,0.075. 
 

4.  Conclusion  

In this studies,we present trigonometrically-fitted  explicit modified Runge-Kutta type 
method for solving general 𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′) with oscillating solutions. So, we 
constructed a three-stage third-order method denoted asTFRKTGG3 method. The results 
show the typical properties of the new trigonometrically-fitted explicit modified Runge-
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Kutta type TFRKTGG method. In addition,  the efficiency and accuracy of the methods 

depend on the step size, ℎ and the frequency, 𝑤. The global error and efficiency of the 
method over a long period of integration are plotted. The Figure represents the efficiency 
and accuracy of the method developed by plotting the graph of the   logarithm of the 
maximum global error against the  logarithm of function evaluations for a longer periods 
of computations.The numerical results show that the maximum global error of the 
proposed method is smaller than that of the other existing methods. The TFRKTGG3 
method is much more effcient than the other existing methods.  
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CHAPTER 3  

RUNGE-KUTTA-NYSTR�̈�M METHODS FOR DIRECTLY SOLVING SECOND ORDER 

LINEAR BOUNDARY VALUE PROBLEMS WITH DIRICHLET CONDITION 

 

Abstract. In this paper, the four-stage fourth-order Runge–Kutta–Nyström method (RKN) 
is used for solving second-order two-point boundary value problem (BVP) with Dirichlet 
condition. The method obtained the solution of the second-order boundary value problem 
directly without reducing it to first-order equations. The method is implemented using 
constant step size via shooting technique. Numerical results are compared with the 
existing Runge-Kutta (RK) method and have clearly shown the advantage and the 
efficiency of the RKN. 

1. Introduction 

 

Consider the simplest form of the second-order two-point boundary value problems as 
follows: 
 

                                              𝑦′′ = 𝑓(𝑥, 𝑦),          𝑎 ≤ 𝑥 ≤ 𝑏                                                     (1) 

with boundary conditions 

𝑦(𝑎) = 𝛼,     𝑦(𝑏) = 𝛽  
 
where a, b,𝛼, 𝛽 are the given constants. In the past decades, BVPs have played an 
important role in modeling the real issues, such as of chemical reactions, heat power 
transmission theory and many physical systems and so forth. These problems can be 
presented in several types of boundary conditions: e.g. Dirichlet, Neumann, and mixed. 
Dirichlet boundary condition is the common boundary condition and has been solved by 
many researchers such as Hamid et al. [6] , Phang et al. [8] , Khan [11] and Jang [12]. 
Phang et al. [7] and Liu [10] studied on Neumann-type boundary value problems and 
Lang [14] studied on mixed-type and Han and Wang [15] proved the existence of order 
two-point BVP subjected to solutions to mixed two-point BVP for impulsive differential 
equations by variational methods.  
 
          In this study we are concerned with Dirichlet type of BVPs. There are many 

analytical and numerical techniques available to solve BVP with Dirichlet condition 

including several well-known methods, such as Adomian decomposition method, finite 

difference method, and collocation method. Hamid et al. [6] solved the Dirichlet type BVPs 

by using extended cubic B-spline interpolation method. Phang et al. [8] used cubic B-

spline method to solve non-Linear BVPs. Ha [9] used Runge-Kutta via shooting method 

to solve BVPs. Jang [12] solved Linear and non-Linear BVPs by using the Adomian 

decomposition method. 
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The purpose of this paper is to use the special RKN method via shooting technique 

for solving the linear second-order two-point BVPs subjected to Dirichlet boundary 

condition directly. The approach for solving higher order ordinary differential equation 

directly has been suggested by NystrÖm 1925. In Section 2 we define linear two-point 

BVP, Section 3 and 4 deal with materials and the methods. In Section 5 we present the 

numerical results and the last Section deals with the conclusion. 

2. Two-Point linear Boundary Value Problem Statement 
 

Two-point BVPs are problems in which, for a set of possibly linear ordinary differential 
equations, some boundary conditions are specified at the initial value of the independent 
variable, while the remainder of boundary conditions is specified at the terminal value of 
the independent variable. The boundary conditions are therefore split between the two 
points, the initial and terminal values of the independent variable. Consider the simplest 
form of the second-order linear two-point BVPs as follows: 

 
            𝑦′′ = 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)   with 𝑦(𝑎) = 𝛼,   𝑦(𝑏) = 𝛽                   (2) 

where a, b,𝛼, 𝛽 are the given constants. The following theorem gives the general 

conditions which ensure that the solution to a second-order BVP exists and is unique. 

Theorem1. Suppose the function 𝑓 in the boundary value problem  

 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),               𝑎 ≤ 𝑥 ≤ 𝑏    𝑦(𝑎) = 𝛼,     𝑦(𝑏) = 𝛽,     
 

is continues on the set 

 

𝐷 = {(𝑥, 𝑦, 𝑦′)|𝑎 ≤ 𝑥 ≤ 𝑏,−∞ < 𝑦′ < ∞}, 
 

and  
𝑑𝑓

𝑑𝑦
  and  

𝑑𝑓

𝑑𝑦′  are also continuous on 𝐷. If  

(1) 
𝑑𝑓

𝑑𝑦
 (𝑥, 𝑦, 𝑦′) > 0  for all (𝑥, 𝑦, 𝑦′) ∈ 𝐷, and 

(2) |
𝑑𝑓

𝑑𝑦′  (𝑥, 𝑦, 𝑦′)| < 𝑀  for all (𝑥, 𝑦, 𝑦′) ∈ 𝐷,  

 

then the boundary value problem has a unique solution. 

 
Proof. See [4]. 

3. Shooting Method for Linear Boundary Value Problem 
 

Shooting technique used to convert the BVP into initial value problems. The idea in 
shooting technique is to obtain the missing initial value until the boundary condition at the 
other end converges to its correct value. When we use the shooting method, we transform 
(1) into the Cauchy-problem of the form 
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𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),      𝑎 ≤ 𝑥 ≤ 𝑏        𝑤𝑖𝑡ℎ          𝑦(𝑎) = 𝛼,     𝑦′(𝑎) = 𝛾,                                (3) 
                                               

where 𝛾 is any number.  Then the resulting IVP will be solved using Runge-Kutta method. 
 
Reduction to Two IVPs: 
 
The solution of a linear two-point BVP is associated by forming a linear combination of 
the solutions to two IVPs. The form of the IVPs are as follows: 
Suppose that 𝑢(𝑥) is the unique solution to the IVP 
 
                𝑢′′ = 𝑝(𝑥)𝑢′(𝑥) + 𝑞(𝑥)𝑢(𝑥) + 𝑟(𝑥)      with   𝑢(𝑎) = 𝛼    and    𝑢′(𝑎) = 0.          (4) 
 
Furthermore, suppose that 𝑣(𝑥) is the unique solution to the IVP 
             
            𝑣′′ = 𝑝(𝑥)𝑣′(𝑥) + 𝑞(𝑥)𝑣(𝑥)    with   𝑣(𝑎) = 0    and    𝑣′(𝑎) = 1.                            (5) 
 
Then the linear combination 
       𝑦(𝑥) = 𝐶1𝑢(𝑥) + 𝐶2𝑣(𝑥)                                                                                                                (6) 
  

is a solution to the linear BVP  

 

 𝑦′′ = 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥).                                                                                                 (7)     
 

Let 𝐶1 = 1, to find 𝐶2, the solution 𝑦(𝑥) in equation (6) takes on the boundary values 

 

       𝑦(𝑎) = 𝑢(𝑎) + 𝐶2𝑣(𝑎) = 𝛼,  
                                                               𝑦(𝑏) = 𝑢(𝑏) + 𝐶2𝑣(𝑏).                                                       (8) 

 

Imposing the boundary condition 𝑦(𝑏) = 𝛽 in (8) produces 𝐶2 =
𝛽 − 𝑢(𝑏)

𝑣(𝑏)
 . Therefore, if 

𝑣(𝑏) ≠ 0, the unique solution of the original two-point BVP is given by: 

 

𝑦(𝑥) = 𝑢(𝑥) +
𝛽 − 𝑢(𝑏)

𝑣(𝑏)
𝑣(𝑥). 

 

4. Special Runge-Kutta-Nystr�̈�m Method 
 

The system of 𝑚 second-order IVP (1) can be written as follows:  
 

𝑦′′ = 𝑓(𝑥, 𝑦),       𝑦(𝑎) = 𝜇 
where    𝑦(𝑥) = [𝑦1(𝑥), 𝑦2(𝑥),… , 𝑦𝑚(𝑥)]𝑇 , 
                𝑓(𝑥, 𝑦) = [𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), … , 𝑓𝑚(𝑥, 𝑦)]𝑇 ,             𝑥 ∈ [𝑎, 𝑏] 
and  𝜇 = [𝜇1, 𝜇2, … , 𝜇𝑚]𝑇  is the initial conditions. 
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The s-stage RKN method for solving the system of second-order IVPs is defined as 

𝑦𝑛+1  =  𝑦𝑛  +  ℎ𝑦′𝑛 + ℎ2 ∑𝑏𝑖

𝑠

𝑖=1

𝑘𝑖 

 

𝑦′𝑛+1  =  𝑦′𝑛  + ℎ ∑𝑏�̅�

𝑠

𝑖=1

𝑘𝑖 

 

                                𝑘𝑖 = 𝑓 (𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + 𝑐𝑖ℎ𝑦′
𝑛

+ ℎ2 ∑𝑎𝑖𝑗𝑘𝑗  

𝑖−1

𝑗=1

)                                                 (9) 

 

for  𝑖 = 2,3, … , 𝑖 − 1. The Butcher tableau of scheme (9) can be written as follows: 
 
    
 

 
 
 
 

where 𝐴 is a matrix(𝑎𝑖𝑗)𝑠𝑥𝑠
 , 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑠]

𝑇 ,   b = [𝑏1, 𝑏2, … , 𝑏𝑠]
𝑇 and  �̅� =

 [�̅�1  ,�̅�2 , … , �̅�𝑠]
𝑇. A RKN method (9) is said to be explicit if 𝑎𝑖𝑗 = 0, for 𝑖 ≤ 𝑗. 

In this study, we used  the four-stage fourth-order dispersive of order eight RKN method 
as given in [16]. The coefficients of the method are given in Table below (see Table 1): 
 

Table 1: The RKN4(4,8,5)M Method [16] 

 
0     

1

4
 

1

32
 

   

7

10
 

19

600
 

16

75
 

  

1 32

315
 

58

315
 

3

14
 

 

 1

21
 

28

81
 

50

567
 

1

54
 

 1

14
 

32

81
 

250

567
 

5

54
 

 

 

 

𝐶 𝐴 

 𝑏𝑇 

�̅�𝑇 
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Algorithm 1: Special Runge-Kutta-Nystr�̈�m Method via Linear Shooting 
Technique: 

 

To approximate the solution of the BVP 

 

                𝑦′′ = 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)        with   𝑦(𝑎) = 𝛼    and    𝑦(𝑏) = 𝛽     
 

INPUT: endpoints 𝑎, 𝑏; boundary conditions 𝛼, 𝛽; number of subintervals 𝑁. 

OUTPUT: approximations 𝑤1,𝑖 to 𝑦(𝑥𝑖) ; 𝑤2,𝑖 to 𝑦′(𝑥𝑖) for each 𝑖 =  0, 1, . . . , 𝑁. 
Step 1: Set ℎ =  (𝑏 −  𝑎)/𝑁; 
                   𝑢1,0  =  𝛼; 
                   𝑢 2,0 =  0; 
                   𝑣1,0  =  0; 

                   𝑣 2,0 =  1. 
Step 2: For 𝑖 =  0, . . . , 𝑁 −  1 do Steps 3 and 4. 

(The special RKN method is used in Steps 3 and 4.) 

Step 3: Set 𝑥 =  𝑎 +  𝑖ℎ. 
Step 4: Set 𝑘1 = 𝑢1,𝑖; 

                     𝑘2 = 𝑢1,𝑖 + 𝑐2ℎ𝑢2,𝑖 − ℎ2𝑎21𝑘1; 

                     𝑘3 = 𝑢1,𝑖 + 𝑐3ℎ𝑢2,𝑖 + ℎ2[−𝑎31𝑘1 − 𝑎32𝑘2]; 

                     𝑘4 = 𝑢1,𝑖 + 𝑐4ℎ𝑢2,𝑖 + ℎ2[−𝑎41𝑘1 − 𝑎24𝑘2 − 𝑎43𝑘3]; 

                     𝑢1,𝑖+1 = 𝑢1,𝑖 + ℎ𝑢2,𝑖 + ℎ2[𝑏1𝑘1 + 𝑏2𝑘2 + 𝑏3𝑘3 + 𝑏4𝑘4];   

                     𝑢2,𝑖+1 = 𝑢2,𝑖 + ℎ[�̅�1𝑘1 + �̅�2𝑘2 + �̅�3𝑘3 + �̅�4𝑘4];   

                     �̅�1 = 𝑣1,𝑖; 

                     �̅�2 = 𝑣1,𝑖 + 𝑐2ℎ𝑣2,𝑖 − ℎ2𝑎21�̅�1; 

                     �̅�3 = 𝑣1,𝑖 + 𝑐3ℎ𝑣2,𝑖 + ℎ2[−𝑎31�̅�1 − 𝑎32�̅�2]; 

                     �̅�4 = 𝑣1,𝑖 + 𝑐4ℎ𝑣2,𝑖 + ℎ2[−𝑎41�̅�1 − 𝑎24�̅�2 − 𝑎43�̅�3]; 

                    𝑣1,𝑖+1 = 𝑣1,𝑖 + ℎ𝑣2,𝑖 + ℎ2[𝑏1�̅�1 + 𝑏2�̅�2 + 𝑏3�̅�3 + 𝑏4�̅�4];   

                    𝑣2,𝑖+1 = 𝑣2,𝑖 + ℎ[�̅�1�̅�1 + �̅�2�̅�2 + �̅�3�̅�3 + �̅�4�̅�4];                

Step 5: Set 𝑤1,0  =  𝛼; 

              𝑤2,0 =
 𝛽 − 𝑢1,𝑁

𝑣1,𝑁
; 

 OUTPUT (𝑎, 𝑤1,0, 𝑤2,0). 

Step 6: For 𝑖 =  1, . . . , 𝑁 

                  set 𝑊1 =  𝑢1,𝑖  +  𝑤2,0𝑣1,𝑖; 
                      𝑊2 =  𝑢2,𝑖  +  𝑤2,0𝑣2,𝑖; 

                         𝑥 =  𝑎 +  𝑖ℎ; 
                  OUTPUT (𝑥,𝑊1,𝑊2). (𝑂𝑢𝑡𝑝𝑢𝑡 𝑖𝑠 𝑥𝑖, 𝑤1,𝑖, 𝑤2,𝑖. ) 
Step 7: Complete. 
 
Burden  and Faires, (2001). 
This algorithm was developed in C language 
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5. Numerical Results 
 

In this section, we applied RKN method derived by Senu [16] to 𝑦′′ = 𝑓(𝑥, 𝑦) ODEs 
problem. The numerical result is compared with the existing RK of the same order when 
the same problem is reduced to a system of first-order equations for four different 
subintervals, N: 4, 8,16 and 32. The following notations are used in the tables: 
 

ℎ =
𝑏−𝑎 

𝑁
          Step size 

NFC               Number of function call  
RKN4             Four-stage fourth order dispersive of order eight RKN method derived by    
                      Senu [16] 
RK                 Existing RK 
 
Problem 1: 

𝑦′′ + 25𝑦 = 0,              𝑥 ∈ [0,
𝜋

2
] ,           𝑦(0) = 1,    𝑦 (

𝜋

2
) = −1, 

The exact solution is:  𝑦(𝑥) = cos(5𝑥) − sin(5𝑥). 
 
Numerical results 
Applying Algorithm 1 to this problem requires approximation the solutions to the IVPs 

𝑢′′ + 25𝑢 = 0,              𝑥 ∈ [0,
𝜋

2
] ,           𝑢(0) = 1,    𝑢′(0) = 0, 

and 

𝑣′′ + 25𝑣 = 0,              𝑥 ∈ [0,
𝜋

2
] ,           𝑣(0) = 0,    𝑣′(0) = 1, 

 

Table 2: Numerical results for RKN4 with 𝑁 = 8 and 𝑁𝐹𝐶 =  32 

𝑥𝑖 Method 𝑢1,𝑖 𝑣1,𝑖 𝑤𝑖 𝑦(𝑥𝑖) | 𝑦(𝑥𝑖) − 𝑤𝑖  | 

0.0 
 
 
0.2 
 
 
0.4 
 
 
0.6 
 
 
0.8 
 
 
1.0 
 
 
1.2 

RKN4 
RK4 
 
RKN4 
RK4 
 
RKN4 
RK4 
 
RKN4 
RK4 
 
RKN4 
RK4 
 
RKN4 
RK4 
 
RKN4 

1.00000000 
1.00000000 
 
0.55532318 
0.55679262 
 
-0.38299271 
-0.36902658 
 
-0.98092043 
-0.96164532 
 
-0.70695576 
-0.70588363 
 
0.19542286 
0.16506585 
 
0.92413896 

0.00000000 
0.00000000 
 
0.16629113 
0.16480833 
 
0.18477744 
0.18352812 
 
0.03901935 
0.04136845 
 
-0.14142965 
-0.13545351 
 
-0.19617346 
-0.19175501 
 
-0.07654498 

1.00000000 
1.00000000 
 
-0.27573911 
-0.33915756 
 
-1.30644279 
-1.36674347 
 
-1.17592488 
-1.18653728 
 
-0.00014206 
0.03048447 
 
1.17582609 
1.20750673 
 
1.30668277 

1.00000000 
1.00000000 
 
-0.27589938 
-0.27589938 
 
-1.30656297 
-1.30656297 
 
-1.17587560 
-1.17587560 
 
0.00000000 
0.00000000 
 
1.17587560 
1.17587560 
 
1.30656296 

0.000000000(0) 
0.000000000(0) 
 
1.602705762(-4) 
6.325817582(-2) 
 
1.201756105(-4) 
6.018050110(-2) 
 
4.927661341(-5) 
1.066168185(-2) 
 
1.420619637(-4) 
3.048447241(-2) 
 
4.951438768(-5) 
3.163113122(-2) 
 
1.198013606(-4) 
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1.4 

RK4 
 
RKN4 
RK4 

0.88197801 
 
0.83144126 
0.81889722 

-0.07956355 
 
0.11112896 
0.10105692 
 

1.31451062 
 
0.27605934 
0.26951984 

1.30656296 
 
0.27589938 
0.27589938 

7.947653276(-3) 
 
1.599661247(-4) 
6.379536844(-3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusion 
 

In this research, we conclude that fourth-order Runge-Kutta-Nystr�̈�m method with 
shooting technique using constant step size is suitable for solving directly second-order 
linear boundary value problems with Dirichlet condition. Numerical results are show that 
RKN method is more efficient in terms of maximum global error and number of function 
evaluations compared to the existing RK method. 
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CHAPTER 4  

2-POINT DIAGONALLY IMPLICIT MULTISTEP BLOCK METHOD OF ORDER FOUR 

FOR SOLVING FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 

 
Abstract 

This paper presents a new 2-point diagonally implicit block method for solving system of 
first order ordinary differential equations. The formulae of the method will be derived by 
using Lagrange interpolation polynomial. This method will approximate the solution of 
initial value problems at two points simultaneously within a block. Predictor corrector 
mode will be implemented in this method with variable step size strategy. The stability 
region of the proposed method will be discussed. Numerical examples are given to 
demonstrate the performance of the method  
 
Keywords: Block method, ordinary differential equation, predictor-corrector, variable step 
size 
 
Introduction 
 
Consider the initial value problems (IVPs) for first order ordinary differential equations 
(ODEs) of the form 

𝑦′ = 𝑓(𝑥, 𝑦),     𝑦(𝑥0) = 𝑦0,     𝑥 ∈ [𝑎, 𝑏].       (1) 

where a  and b  are finite. The solution of (1) has been discussed by various researchers 

by using various methods. Block method is one of numerical method with an advantage 
can obtain approximate solution at more than one point. The number of points is 
depending on the constructed method.  
 
Shampine and Watts (1969) are among the earliest researchers that discovered block 
method for solving ODEs. Several researchers proposed block method for solving ODEs 
such as Mehrkanoon et al. (2010) which introduced various 2-point 2-step method for 
solving first order ODEs and Majid and Suleiman (2011) introduced 2-point fully implicit 
multistep block.  
 
The 3-point block method for solving ODEs was presented by Majid et al. (2006) and 
Mehrkanoon et al. (2012). Nasir et al. (2011) and Zawawi et al. (2012) used block 
backward differentiation formulas for the solution of ODEs. Hybrid block method was 
implemented by Sagir (2014) while Odekunle et al. (2012) used 4-point block method for 
solving ODEs. Fatunla (1991) and Adegboye and Ahmed (2014) solved higher order 
ODEs by using block method. 
 
The aim of this paper is to investigate the performance of 2-point diagonally implicit block 
method of order four (2PDO4). This new diagonally implicit method will consider the same 
order formula for first and second point. 
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Formulation of 2PDO4 method 
 

 
Figure 1: 2PDO4 method 

 

The solution of 𝑦𝑛+1 and 𝑦𝑛+2 at the points 𝑥𝑛+1 and 𝑥𝑛+2 respectively were computed 
simultaneously in a block with the step size ℎ as in Figure 1. Three back values at the 
points 𝑥𝑛, 𝑥𝑛−1 and 𝑥𝑛−2 were used to form the corrector formula 𝑦𝑛+1 while two back 

values at the points 𝑥𝑛 and 𝑥𝑛−1 were used to form the corrector formula 𝑦𝑛+2 where each 
interval has step size 𝑟ℎ.  
 
Lagrange interpolation polynomial was implemented to derive predictor and corrector 
formulas. The sets of interpolation points involved for obtaining the corrector formula to 

approximate the solutions of 1ny +  and 2ny +  are 

{(𝑥𝑛−2, 𝑓𝑛−2), (𝑥𝑛−1, 𝑓𝑛−1), (𝑥𝑛, 𝑓𝑛), (𝑥𝑛+1, 𝑓𝑛+1)} and 
{(𝑥𝑛−1, 𝑓𝑛−1), (𝑥𝑛, 𝑓𝑛), (𝑥𝑛+1, 𝑓𝑛+1), (𝑥𝑛+2, 𝑓𝑛+2)} respectively. The first point 𝑦𝑛+1 and 

second point 𝑦𝑛+2 are derived by integrating (1) such that 

∫𝑦′𝑑𝑥 = ∫𝑓(𝑥, 𝑦)𝑑𝑥          (2) 

where the interval of integration for 𝑦𝑛+1 and  𝑦𝑛+2 are [𝑥𝑛, 𝑥𝑛+1] and [𝑥𝑛, 𝑥𝑛+2]  
respectively.  
 

The function 𝑓(𝑥, 𝑦) in (2) is replaced by the Lagrange polynomial which interpolates the 
set of corresponding mentioned points. Evaluating the integral using MAPLE gives the 

formula for the first and second point in terms of 𝑟 as follows: 
 
The first point 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2𝑟2(𝑟+1)(2𝑟+1)
[2𝑟2 (𝑟2 + 𝑟 +

1

4
) 𝑓𝑛+1  

                                      +(𝑟2 +
1

2
𝑟 +

1

12
) (𝑟 + 1)(2𝑟 + 1)𝑓𝑛  

                                     −2(
1

3
𝑟 +

1

12
) (2𝑟 + 1)𝑓𝑛−1 + (

1

6
𝑟 +

1

12
) (𝑟 + 1)𝑓𝑛−2]    (3) 

     
and the second point, 

𝑦𝑛+2 = 𝑦𝑛 +
ℎ

2𝑟(𝑟+1)(𝑟+2)
[𝑟 (

2

3
𝑟 +

4

3
) (𝑟 + 1)𝑓𝑛+2 + 2𝑟 (

4

3
𝑟 +

4

3
) (𝑟 + 2)𝑓𝑛+1      

      +
2

3
𝑟(𝑟 + 1)(𝑟 + 2)𝑓𝑛.         (4)   

The step size strategy in the implementation of the method is the choice for next 

successful step size will be restricted to double (𝑟 =
1

2
) or the same as the current step 
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size (𝑟 = 1) and when then step size failure it will be restricted to half ( 𝑟 = 2). This is to 
minimize the number of formulas required to be stored.  
 

Taking 𝑟 = 1, 𝑟 = 2 and 𝑟 =
1

2
  in formula (3) and (4) yield the following first and second 

point of the corrector formulas for the 2PDO4 method: 
 

For 𝑟 = 1 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

24
(9𝑓𝑛+1 + 19𝑓𝑛 − 5𝑓𝑛−1 + 𝑓𝑛−2) , 

𝑦𝑛+2 = 𝑦𝑛 +
ℎ

3
(𝑓𝑛+2 + 4𝑓𝑛+1 + 𝑓𝑛) .       (5) 

For 𝑟 = 2 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

96
(40𝑓𝑛+1 + 61𝑓𝑛 − 6𝑓𝑛−1 + 𝑓𝑛−2) , 

𝑦𝑛+2 = 𝑦𝑛 +
ℎ

3
(𝑓𝑛+2 + 4𝑓𝑛+1 + 𝑓𝑛) .       (6)  

For  𝑟 =
1

2
 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(2𝑓𝑛+1 + 7𝑓𝑛 − 4𝑓𝑛−1 + 𝑓𝑛−2),  

𝑦𝑛+2 = 𝑦𝑛 +
ℎ

3
(𝑓𝑛+2 + 4𝑓𝑛+1 + 𝑓𝑛).       (7) 

 
The predictor formulas were derived similarly but with set of interpolation points   
{(𝑥𝑛−2, 𝑓𝑛−2), (𝑥𝑛−1, 𝑓𝑛−1), (𝑥𝑛, 𝑓𝑛)}. The order of predictor formulas are one less than the 
corrector formulas. 
 
Implementation 
The choice for the next step size is important in the implementation of the method. By 

adopting Mehrkanoon et al. (2010), the local error estimate 𝐿𝐸𝑟𝑟𝑘 will be performed in a 
process to determine whether the next step is successful or failure. Given 

𝐿𝐸𝑟𝑟𝑘 = |𝑦𝑛+1
𝑐 (𝑘 + 1) − 𝑦𝑛+1

𝑐 (𝑘)|    

where 𝑦𝑛+1
𝑐 (𝑘 + 1) and 𝑦𝑛+1

𝑐 (𝑘) denote the first corrector formulas of order 𝑘 + 1 and 𝑘 

respectively. The step is said to be successful if the value of 𝐿𝐸𝑟𝑟𝑘 less than tolerance 

𝑇𝑂𝐿 and failure otherwise. After each successful step, the next step size prediction is 

given by 

ℎ𝑛𝑒𝑤 = 𝐶 × ℎ𝑜𝑙𝑑 × (
𝑇𝑂𝐿

𝐿𝐸𝑟𝑟𝑘
)

1

𝑝
  

where  𝐶 is a safety factor. To reduce the risk of rejected step, 𝐶 = 0.8  is used. The next 
step size is doubled if ℎ𝑛𝑒𝑤 > 2 × ℎ𝑜𝑙𝑑, otherwise it will remain constant. If the step failure 
occurs, the next step size is halved. 

 
Order and stability region 
As referred in Fatunla (1991) and Nasir (2011), given 
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∑ 𝐴𝑘𝑌𝑛+𝑘 = ℎ ∑ 𝐵𝑘𝐹𝑛+𝑘
𝑗
𝑘=0

𝑗
𝑘=0          (8) 

as the general matrix form of linear multistep method where 𝐴𝑘 and 𝐵𝑘 are 𝑟 by 𝑟 matrices 

with elements 𝑎𝑙𝑚 and 𝑏𝑙𝑚 for 𝑙, 𝑚 = 1,2, … , 𝑟 . The associated difference operator 𝐿  as 

follows 

𝐿[𝑧(𝑥); ℎ] = ∑ [𝐴𝑘𝑧(𝑥 + ℎ) − ℎ𝐵𝑘𝑧′(𝑥 + 𝑘ℎ)]𝑗
𝑘=0                                     (9) 

where 𝑧(𝑥) is the exact solution and assume to be sufficiently differentiable. L  is order 𝑝 

if 𝐶0 = 𝐶1 = ⋯ = 𝐶𝑝 = 0, 𝐶𝑝+1 ≠ 0 . 𝐶𝑝+1 is called the error constant.  

The general form of constant 𝐶𝑞 is defined as 

𝐶0 = ∑ 𝐴𝑘
𝑗
𝑘=0  , 

𝐶1 = ∑ [𝑘𝐴𝑘 − 𝐵𝑘]
𝑗
𝑘=0  , 

      ⋮ 

𝐶𝑞 = ∑ [
1

𝑞!
𝑘𝑞𝐴𝑘 −

1

(𝑞−1)!
𝑘𝑞−1𝐵𝑘] ,   𝑞 = 2,3, … , 𝑝 + 1

𝑗
𝑘=0                      (10) 

 

Formula 𝑦𝑛+1 and 𝑦𝑛+2 when 𝑟 = 1 will be considered. Hence, to obtain the order of the 
method, (5) is written in matrix form as follows 
 

[
1 0
0 1

] [
𝑦𝑛+1

𝑦𝑛+2
] = [

0 1
0 1

] [
𝑦𝑛−1

𝑦𝑛
] + ℎ {[

9

24
0

4

3

1

3

] [
𝑓𝑛+1

𝑓𝑛+2
] + [

−
5

24

19

24

0
1

3

] [
𝑓𝑛−1

𝑓𝑛
]  

         +[
0

1

24

0 0
] [

𝑓𝑛−3

𝑓𝑛−2
]} .                                    (11) 

By applying (10), 𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = [
0
0
]  and 𝐶5 = [

−
19

720

−
1

90

]. Therefore, the method 

is of order four. 

 

In order to analyzed the method stability, we consider a linear first order test problem  

 𝑦′ = 𝑓 = 𝜆𝑦 .                            (12)  

The test equation (12) is substituted into the corrector formulas of 2PDO4 method (5), (6) 

and (7). The formulas then written in matrix form and setting the determinant to zero will 

give the stability polynomial. The stability polynomial of 2PDO4 method at 𝑟 = 1, 𝑟 = 2  

and 𝑟 =
1

2
  are as follows: 

 

At 𝑟 = 1, 

(
1

8
ℎ

2
−

17

24
ℎ + 1) 𝑡4 + (−ℎ

2
−

13

12
ℎ − 1) 𝑡3 + (−

1

8
ℎ

2
−

5

24
ℎ) 𝑡2 = 0,      

          (13) 

at 𝑟 = 2, 
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(
5

36
ℎ

2
−

3

4
ℎ + 1) 𝑡4 + (−

35

8
ℎ

2
−

19

16
ℎ − 1) 𝑡3 + (−

5

144
ℎ

2
−

1

16
ℎ) 𝑡2 = 0,    

          (14) 

at 𝑟 =
1

2
, 

(
1

9
ℎ

2
−

2

3
ℎ + 1) 𝑡4 + (−

5

3
ℎ

2
−

2

3
ℎ − 1) 𝑡3 + (−

4

9
ℎ

2
−

2

3
ℎ) 𝑡2 = 0        

                   (15) 

where ℎ = ℎ𝜆  and the stability region plotted is shown in Figure 2. 

 

Figure 2: Stability region of 2PDO4 method 

Note that in Figure 2, the stability region lies inside the boundary of dotted points. It is 

clear that as the step size is increased, the region of stability is getting smaller. The largest 

region is when the step size is halved (𝑟 = 2). 

Results and Discussion  
The following problems were tested to show the performance of the proposed method: 
 
Problem 1 (Majid (2004)) 

𝑦′1 = 𝑦2,  𝑦′2 = 2𝑦2 − 𝑦1,   𝑦1(0) = 0, 𝑦2(0) = 1,   [0,50] . 
Exact solution: 𝑦1(𝑥) = 𝑥𝑒𝑥, 𝑦2(𝑥) = (1 + 𝑥)𝑒𝑥. 
 
Problem 2 (Majid (2004)) 
𝑦′

1
= 𝑦2,  𝑦

′
2

= −𝑦3, 𝑦′
3

= 𝑦4, 𝑦
′
4

= 𝑦2 + 2𝑒𝑥,  

𝑦1(0) = 0, 𝑦2(0) = −2, 𝑦3(0) = 0, 𝑦4(0) = 2,    [0,10] . 
Exact solution: 

 𝑦1(𝑥) = −𝑒𝑥 + 𝑒−𝑥,  𝑦2(𝑥) = −𝑒𝑥 − 𝑒−𝑥,  𝑦3(𝑥) = 𝑒𝑥 − 𝑒−𝑥,   
 𝑦4(𝑥) = 𝑒𝑥 + 𝑒−𝑥 . 
 
Problem 3 (Majid (2004)) 
𝑦′

1
= 𝑦2,  𝑦

′
2

= −2𝑦2 − 5𝑦3 + 3,  𝑦′
3

= 𝑦2 + 2𝑦3,  

𝑦1(0) = 0, 𝑦2(0) = 0, 𝑦3(0) = 1,    [0,4𝜋].  
Exact solution:  

𝑦1(𝑥) = 2 cos 𝑥 + 6 sin 𝑥 − 6𝑥 − 2,  𝑦2(𝑥) = −2 sin 𝑥 + 6 cos 𝑥 − 6 𝑦3(𝑥) = 2 sin 𝑥 −

r 2

r 1

r 1

2

3 2 1
Real Part

2

1

1

2

Imaginary Part



24 
 
 

2 cos 𝑥 + 3. 
 
The following notations are used in the tables: 
TOL  Tolerance 
MTD  Method employed 
TS  Total steps taken 
FS  Total failure step 
MAXE  Magnitude of the maximum error of the computed solution 
AVERR Average error 
FCN  Total function calls 
2PDO4 The implementation of the 2-point diagonally implicit multistep block method 
of order four 
2P1D1 The implementation of the 2-point 1 block diagonally implicit method (Majid 
(2004)) 
 
As referred to Mehrkanoon et al. (2010) the error calculated is defined as  

(𝑒𝑟𝑟𝑖)𝑡 = |
(𝑦𝑖)𝑡 − (𝑦(𝑥𝑖))𝑡

𝐴 + 𝐵(𝑦(𝑥𝑖))𝑡
| 

where (𝑦)𝑡  is the t -th component of y . Three types of error test that resulted from the 

formula is absolute error test (when 𝐴 = 1, 𝐵 = 0), relative error test (when 𝐴 = 0, 𝐵 = 1) 
and mixed error test (when 𝐴 = 1, 𝐵 = 1). The relative error test is used for Problem 1 
while absolute error test is used for Problem 2 and 3.  
 
The maximum error and average error are defined as follows: 

𝑀𝐴𝑋𝐸 = max
1≪𝑡≪𝑆𝑆𝑇𝐸𝑃

( max
1≪𝑡≪𝑁

(𝑒𝑟𝑟𝑡)𝑡) 

and 

𝐴𝑉𝐸𝑅𝑅 =
∑ ∑ (𝑒𝑟𝑟𝑡)𝑡

𝑁
𝑡=1

𝑆𝑆𝑇𝐸𝑃
𝑡=1

(𝑃)(𝑁)(𝑆𝑆𝑇𝐸𝑃)
 

where N  is the number of equations in the system, SSTEP  is the number of successful 

steps and P  is the number of points in the block. In the code, we iterate the corrector to 
converge using the convergence criteria: 

 |𝑦𝑛+1
𝑡+1 − 𝑦𝑛+1

𝑡 | < 0.1 × 𝑇𝑂𝐿 

where t  here is the number of iterations. 
 
The code is written in C language. The numerical results of the tested problems are 
tabulated in Table 1-3. From Table 1-2 it can be seen that the maximum errors and the 
average errors of 2PDO4 method is still within the tolerances even though not as accurate 
as 2P1D1 method. We must take note that 2P1D1 method has order four formula at the 
first point and order five formula at the second point while 2PDO4 method has order four 
formula for both points. However, it is obvious that 2PDO4 is better than 2P1D1 method 
in term of total number of function evaluations. From Table 3, the maximum errors and 
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the average errors of 2PDO4 method and 2P1D1 method is comparable with 2PDO4 
method is better in term of total number of function evaluations. 
Table 1: Numerical results of 2P1D1 and 2PDO4 methods for solving Problem 1 

 

TOL MTD TS FS MAXE AVERR FCN 

210-  
2PDO4 61 0 4.32962(-2) 1.06586(-2) 447 

2P1D1 90 0 1.06814(-3) 4.37546(-4) 639 

410-  
2PDO4 198 0 4.90948(-4) 1.75571(-4) 1211 

2P1D1 197 0 3.22407(-5) 1.56496(-5) 1489 

610-  
2PDO4 487 0 2.09039(-6) 7.53002(-7) 3211 

2P1D1 464 0 1.32582(-6) 3.18242(-6) 3601 

 

Table 2: Numerical results of 2P1D1 and 2PDO4 methods for solving Problem 2 

 

TOL MTD TS FS MAXE AVERR FCN 

210-  
2PDO4 29 0 8.69604(-3) 6.87976(-4) 157 

2P1D1 34 0 3.98536(-4) 6.22530(-5) 191 

410-  
2PDO4 59 0 2.91545(-5) 6.12691(-6) 309 

2P1D1 59 0 4.22637(-6) 1.04006(-6) 373 

610-  
2PDO4 115 0 3.69912(-7) 1.09294(-7) 639 

2P1D1 117 0 4.63772(-8) 1.35866(-8) 813 

 
Table 3: Numerical results of 2P1D1 and 2PDO4 methods for solving Problem 3 

 

TOL MTD TS FS MAXE AVERR FCN 

210-  
2PDO4 34 1 7.66411(-2) 2.52185(-3) 203 

2P1D1 38 0 1.07756(-2) 1.30399(-3) 255 

410-  
2PDO4 73 3 8.22941(-4) 4.78136(-5) 421 

2P1D1 68 0 1.16140(-4) 1.91641(-5) 529 

610-  
2PDO4 167 2 9.25550(-6) 7.14873(-7) 987 

2P1D1 137 0 1.24590(-6) 2.63405(-7) 987 
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Conclusion 
In this paper, 2PDO4 method that has order four for first and second point approximation 
formulas is proposed. The maximum errors and average errors of the method are 
comparable or one decimal places larger than 2P1D1 method but it still within the 
tolerances. It can be concluded that 2PDO4 method is better in terms of function 
evaluations than 2P1D1 method. 
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CHAPTER 5  

NUMERICAL METHOD FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION 

WITH IMPLICIT MULTISTEP BLOCK METHOD 

 
Abstract:  
The numerical solution of the second kind of Volterra integro-differential equation (VIDE) 
implementation of the implicit multistep block method is discussed in this paper. This 
method will approximate the solutions for the ordinary differential equation part of the 
VIDE at two points simultaneously using constant step size. The appropriate quadrature 
rule is chosen to be adapted into the implicit multistep block method for solving the integral 
part of VIDE. The stability region is plotted to prove the behavior of A-stable. Preliminary 
results from the application of the implicit multistep block method (IMBM) are given and 
the comparisons are made with the existing methods in order to test the efficiency of the 
proposed method. 
 
Keywords: Volterra integro-differential equation, multistep method, block method, 
Simpson’s rule. 
 
Introduction 
Integro-differential equation plays major roles in mathematical modeling of the real life 
phenomena with several fields such as engineering, physics, biology and natural 
sciences. Volterra integro-differential equation happen when any equation consists of the 
derivative and integral of the unknown function 𝑦(𝑥). Volterra integro-differential equation 
are usually difficult to solve analytically. Some numerical methods of ordinary differential 
equation have been extended to approximate the numerical solution of Volterra integro-
differential equation. Numerical integration methods for Volterra integro-differential 
equation has been proposed by Day (1967). Linz (1969) extended theory of stability 
analysis for ordinary differential equation to the integro-differential equation. Then, he 
proposed the combination of numerical quadrature rule and interpolation scheme for 
solving the problem of Volterrra integro-differential equation.  
 
The nonlinear integro-differential equation has been studied by Chang and Day (1978) 
and they analyzed the properties of the nonlinear integro-differential equation. The 
convergence of the cyclic multistep method has been developed by Mckee (1979). He 
derived higher order of the cyclic multistep method for Volterra integro differential 
equation and implemented the quadrature rule which consists of Simpson’s rule and 
Weddle’s rule for solving the integral term in VIDE. Yuan and Tang (1990) introduced 
implicit Runge-Kutta method for the nonlinear integro-differential equation. They had two 
advantages for using implicit Runge-Kutta method in order to solve the Volterra integro-
differential equation which are the stability of the method and the accuracy of the 
numerical results. Shaw (2000) constructed a parallel algorithm with fourth order Adam-
Bashforth-Moulton predictor-corrector method and Newton Gregory quadrature rule to 
approximate the solution for the nonlinear Volterra integro-differential equation. 
 



29 
 
 

Recently, some reseachers have been interested in applying the block method on 
Volterrra integro-differential equation. Mohamed and Majid (2015) introduced one-step 
block method for the linear problem of Volterra integro differential equation. Then they 
extended their work on Volterra integro-differential equation using multistep block method 
in Mohamed and Majid (2016). Baharum et al (2018) proposed the third order of 
diagonally implicit multistep block method to approximate the numerical solution of VIDE. 
In this paper, we propose the application of implicit multistep block method to solve the 
second kind of Volterra integro-differential equation of the form; 

𝑦′(𝑥) = 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥)),          0 ≤ 𝑥 ≤ 𝑎                                                  (1) 
where  

𝑧(𝑥) = ∫ 𝐾(𝑥, 𝑠)𝑦(𝑠)
𝑥

0

𝑑𝑠.         𝑦(0) = 𝑦0                                                    (2) 

Comparisons are made between the proposed method with the existing method in the 
literature review. 
 
Methodology 
Regarding Majid and Suleiman (2011), the interval [𝑎, 𝑏] is divided into series of block 
with each block containing two points as Figure 1. 
 
 
 
 
 
 
 
 
 
 
Equation (1) will be integrated once over the interval [𝑥𝑛, 𝑥𝑛+1] and [𝑥𝑛, 𝑥𝑛+2] 
simultaneously with respect to 𝑥. Hence, the formulae of 𝑦𝑛+1 and 𝑦𝑛+2 can be determined 
as, 

∫ 𝑦′(𝑥)

𝑥𝑛+𝑖

𝑥𝑛

𝑑𝑥 = ∫ 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥))

𝑥𝑛+𝑖

𝑥𝑛

𝑑𝑥, 

𝑦(𝑥𝑛+𝑖) − 𝑦(𝑥𝑛) = ∫ 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥))

𝑥𝑛+𝑖

𝑥𝑛

𝑑𝑥. 

where 𝑖 = 1, 2. The function 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥)) will be approximated using the Lagrange 

interpolating polynomial of degree three where the interpolation points involved is four 

points ie {𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1} for the first point 𝑦𝑛+1. Thus, taking 𝑥 = 𝑥𝑛+1 + 𝑠ℎ, replacing 

𝑑𝑥 = ℎ𝑑𝑠 and the range of the limit of integration is changed from −1 to 0. The first point 
formula can be obtained by solving in MAPLE software. The formula of 𝑦𝑛+1 is obtained 
as follows, 

Figure 1: Implicit multistep block method 
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𝑦𝑛+1 = 𝑦𝑛 + ℎ [
1

24
𝐹𝑛−2 −

5

24
𝐹𝑛−1 +

19

24
𝐹𝑛 +

3

8
𝐹𝑛+1].                                      (3) 

However, the formula of the second point can be developed by using the Lagrange 

interpolating polynomial of degree three at points {𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2}. Replacing 𝑥 =
𝑥𝑛+2 + 𝑠ℎ and changing 𝑑𝑥 = ℎ𝑑𝑠. Then, the limit of integration will be replaced from −2 

to 0 and the second point formula will be obtained; 

𝑦𝑛+2 = 𝑦𝑛 + ℎ [
1

3
𝐹𝑛 +

3

4
𝐹𝑛+1 +

1

3
𝐹𝑛+2].                                                              (4) 

The formula (2) and (3) can be rewritten in matrix form, 

[
0 0 −1 1 0
0 0 −1 0 1

]

[
 
 
 
 

 

𝑦𝑛−2

𝑦𝑛−1
𝑦𝑛

𝑦𝑛+1

𝑦𝑛+2]
 
 
 
 

= ℎ [

1

24
−

5

24

19

24

3

8
0

0 0
1

3

4

3

1

3

]

[
 
 
 
 
𝐹𝑛−2

𝐹𝑛−1

𝐹𝑛

𝐹𝑛+1

𝐹𝑛+2 ]
 
 
 
 

 

By applying similar procedure as the derivation of the corrector formulae, the predictor 
formulae can be developed. The predictor formulae is derived using the Lagrange 
interpolating polynomial of degree two and the order of the predictor formulae is one order 
less. According to Lambert (1973) the order of the corrector formulae can be identified 
and the coefficient of the error constant  is determined as follows, 

𝐶𝑝 = ∑(
𝑗𝑝𝛼𝑗

𝑝!
−

𝑗𝑝−1𝛽𝑗

(𝑝 − 1)!
)

𝑘

𝑗=0

, 

𝐶1 = [
0
0
],                                    

𝐶2 = [
0
0
],                                    

⋮                                     

𝐶5 = [−
19

720
−

1

90
]
𝑇

≠ 0. 

Given 𝐶5 ≠ 0, then the derived method is of order four. 
 
Implementation 
Since 𝑧(𝑥) is the integral term in VIDE and cannot be evaluated explicitly, the numerical 
integration formula is adapted to the derived method for solving the integral term. The 

Newton-Cote quadrature formula which included Simpson’s 1/3 rule and composite 
Simpon’s rule are appropriate is chosen to be adapted into the implicit multistep block 

method. Given that 𝑛 = 2, 4, 6, …, the composite Simpson’s rule may be written as 

𝑧𝑛+1 =
ℎ

3
∑𝜔𝑖

𝑠𝐾(𝑥𝑛+1, 𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=0

+
ℎ

6
[𝐾(𝑥𝑛+1, 𝑥𝑛, 𝑦𝑛) + 4𝐾 (𝑥𝑛+1, 𝑥𝑛+

1
2
, 𝑦

𝑛+
1
2
) + 𝐾(𝑥𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1)], 

𝑧𝑛+2 =
ℎ

3
∑ 𝜔𝑖

𝑠𝐾(𝑥𝑛+2, 𝑥𝑖, 𝑦𝑖)

𝑛+2

𝑖=0

 

where 𝜔𝑖
𝑠 are presented as the Simpson’s rule weights which are 1,4,2,4, … ,2,4,1 and the 
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formula for 𝑦
𝑛+

1

2

 can be generated from Lagrange interpolating polynomial at the points 

{𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1}. Therefore the formula for 𝑦
𝑛+

1

2

 is 

𝑦
𝑛+

1
2

=
1

16
𝑦𝑛−2 −

5

16
𝑦𝑛−1 +

15

16
𝑦𝑛 +

5

16
𝑦𝑛+1. 

 
Stability region 
The stability region of the implicit multistep block method will be discussed in this section 
using the linear test equation of VIDE, 

𝑦′ = 𝜉𝑦(𝑥) + 𝜂 ∫ 𝑦(𝑠)
𝑥

0

 𝑑𝑠 

where 𝜉 = 𝜆 + 𝜇 and 𝜂 = −𝜆𝜇. The following equations represent the corresponding 
characteristics polynomial of the derived method and Simpson’s 1/3 rule. 

1. Corrector formula for the first point 

         𝜌1(𝑟) = 𝑟3 − 𝑟2,               𝜎1(𝑟) =
3

8
𝑟3 +

19

24
𝑟2 −

5

24
𝑟 +

1

24
 

2. Corrector formula for the second point 

   𝜌2(𝑟) = 𝑟4 − 𝑟3,               𝜎2(𝑟) =
1

3
𝑟4 +

4

3
𝑟3 +

1

3
𝑟2 

3. Simpson’s 1/3 rule 

�̃�(𝑟) = 𝑟2 − 1,                �̃�(𝑟) =
1

3
𝑟2 +

4

3
𝑟 + 1/3 

The stability polynomial of these methods can be obtained after substituting the 
characteristic polynomial into this particular formula 

𝜋(𝑟, ℎ𝜉, ℎ2𝜂) = �̌�(𝑟)[𝜌(𝑟) − ℎ𝜉𝜎(𝑟)] − ℎ2𝜂�̌�(𝑟)𝜎(𝑟) 
where 𝐻1 = ℎ𝜉 and 𝐻2 = ℎ2𝜂. Hence, the stability polynomial of the developed method 
paired with the Simpson’s rule is determined as, 
2

3
𝑟3𝐻1𝐻2 −

1

6
𝑟4𝐻1𝐻2 +

1

12
𝑟2𝐻1𝐻2 −

2

3
𝑟5𝐻1𝐻2 +

1

12
𝑟3𝐻2

2 −
1

72
𝑟2𝐻2

2 −
5

36
𝑟3𝐻2 +

1

72
𝑟2𝐻2

−
17

72
𝑟6𝐻2 −

131

36
𝑟5𝐻2 + 4𝑟4𝐻2 +

1

72
𝑟6𝐻2

2 −
11

36
𝑟5𝐻2

2 +
14

9
𝑟4𝐻2

2 −
5

4
𝑟5𝐻1

2

−
3

4
𝑟3𝐻1

2 −
1

8
𝑟2𝐻1

2 −
2

3
𝑟3𝐻1 −

5

24
𝑟2𝐻1 −

17

24
𝑟6𝐻1 +

5

4
𝑟4𝐻1 +

1

12
𝑟6𝐻1𝐻2

+
1

8
𝑟6𝐻1

2 +
1

3
𝑟5𝐻1 + 2𝑟4𝐻1

2 + 𝑟6 − 3𝑟5 + 3𝑟4 − 𝑟3 = 0. 

 
By using MAPLE software, the stability region for the proposed methods can be illustrated 
and presented in the Figure 2. 
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Figure 2: Stability region for IMBM method in the H1, H2 plane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The stability region of these methods is 𝐴-stable since the region lies in the quarter plane 
𝐻1 < 0 and 𝐻2 < 0. 
 
Results and Discussion  
The efficiency of the derived method, IMBM is compared with the existing methods by 
considering the following Problem 1 until Problem 4. 
 
Problem 1: Linear VIDE 

𝑦′(𝑥) = −sin 𝑥 − cos 𝑥 + ∫ 2 cos(𝑥 − 𝑠)  𝑦(𝑠)
𝑥

0

𝑑𝑠, 

𝑦(0) = 1,          0 ≤ 𝑥 ≤ 5. 
Exact solution: 𝑦(𝑥) = exp(−𝑥). 
Source: Chen and Zhang (2011)  
 
Problem 2: Nonlinear VIDE 

𝑦′(𝑥) = 2𝑥 −
1

2
sin(𝑥4) + ∫ 𝑥2𝑠 cos(𝑥2𝑦(𝑠))

𝑥

0

𝑑𝑠, 

𝑦(0) = 0,          0 ≤ 𝑥 ≤ 2. 
Exact solution: 𝑦(𝑥) = 𝑥2. 
Source: Dehghan and Salehi (2012) 
 
Problem 3: Nonlinear VIDE 

𝑦′(𝑥) = 𝑥 exp(1 − 𝑦(𝑥)) −
1

(1 + 𝑥)2
− 𝑥 − ∫

𝑥

(1 + 𝑠)2
exp(1 − 𝑦(𝑠))

𝑥

0

𝑑𝑠, 

𝑦(0) = 1,          0 ≤ 𝑥 ≤ 4. 

Exact solution: 𝑦(𝑥) =
1

1+𝑥
. 

Source: Shaw (2000)  
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Problem 4: Nonlinear VIDE 

𝑦′(𝑥) =
4

3
exp(−𝑦(𝑥)) −

1

3
𝑥3 + ∫

4

3𝑥
𝑠2 exp(𝑦(𝑠))

𝑥

0

 𝑑𝑠, 

𝑦(1) = 0,          1 ≤ 𝑥 ≤ 2. 
Exact solution: 𝑦(𝑥) = ln(𝑥). 
Source: Mehdiyeva et al (2013) 
  
These are notations that are applied in the following tables. 
 

ℎ    : Step size 
ITN    : Number of iterations 
MAXE   : Maximum error 
TS   : Total steps taken 
TFC   : Total function calls 
ABM4   : Fourth order Adam-Bashforth-Moulton method with Simpson’s rule. 
2PBM4  : Two points multistep block method by Mohamed and Majid (2016)    
     with Simpson’s rule. 
IMBM   : Implicit Multistep Block Method with composite Simpson’s rule. 
The maximum error is defined as 

𝑀𝐴𝑋𝐸 = max
0≤𝑛≤𝑁

|𝑦(𝑥𝑛) − 𝑦𝑛| 

 
Table 1: Numerical results for Problem 1 

𝒉 Method MAXE TFC TS Time 

1

4
 

ABM4 5.4620(−04) 88 20 0.0720 

2PBM4 4.3127(−03) 64 11 0.0506 

IMBM 3.3729(−03) 57 11 0.0070 

1

8
 

ABM4 1.9899(−04) 168 40 0.1617 

2PBM4 2.0203(−04) 124 21 0.1096 

IMBM 7.5341(−05) 117 21 0.0400 

1

16
 

ABM4 2.8096(−05) 328 80 0.2133 

2PBM4 1.8393(−05) 244 41 0.2010 
IMBM 1.6808(−05) 237 41 0.1040 

1

32
 

ABM4 2.4801(−06) 648 160 0.3328 

2PBM4 1.4924(−06) 484 81 0.3026 

IMBM 1.4843(−07) 477 81 0.1360 
 

Table 2: Numerical results for Problem 2 

𝒉 Method MAXE TFC TS Time 

2

9
 

ABM4 4.0768(−02) 45 8 0.0523 
2PBM4 1.0453(−01) 26 6 0.0310 
IMBM 1.1208(−01) 19 6 0.0050 

ABM4 1.5832(−03) 72 16 0.0823 
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2

17
 

2PBM4 2.1837(−03) 42 10 0.0471 
IMBM 8.2296(−03) 35 10 0.0120 

2

33
 

ABM4 1.1869(−04) 141 32 0.1453 
2PBM4 1.1108(−04) 74 18 0.0632 
IMBM 3.2810(−04) 67 18 0.0160 

2

65
 

ABM4 6.0167(−06) 269 64 0.1987 
2PBM4 5.8611(−06) 138 34 0.1566 
IMBM 1.6507(−05) 131 34 0.0410 

 

Table 3: Numerical results for Problem 3 

𝒉 Method MAXE TFC TS Time 

1

40
 

ABM4 1.9714(−07) 648 160 0.3439 
2PBM4 3.6627(−07) 484 81 0.2960 
IMBM (ITN=3) 7.9451(−07) 477 81 0.0740 

IMBM (ITN=4) 4.2476(−08) 635 81 0. 0980 

1

80
 

ABM4 1.3369(−08) 1288 320 0.5554 
2PBM4 2.0834(−08) 964 161 0.4999 
IMBM (ITN=3) 9.1816(−08) 957 161 0.1980 
IMBM (ITN=4) 2.5564(−09) 1275 161 0.2020 

1

160
 

ABM4 8.7364(−10) 2568 640 1.1720 
2PBM4 1.2376(−09) 1924 321 0.8787 
IMBM (ITN=3) 1.0939(−08) 1917 321 0.4350 
IMBM (ITN=4) 1.5749(−10) 2555 321 0.4730 

1

320
 

ABM4 5.5888(−11) 5128 1280 1.8789 
2PBM4 7.5087(−11) 3844 641 1.6850 
IMBM (ITN=3) 1.3338(−09) 3837 641 1.2650 
IMBM (ITN=4) 9.7764(−12) 5115 641 1.4000 

 

Table 4: Numerical results for Problem 4 

𝒉 Method MAXE TFC TS Time 

1

32
 

ABM4 6.5536(−08) 136 32 0.1325 
2PBM4 5.9812(−08) 99 17 0.0940 
IMBM (ITN=3) 8.7625(−07) 93 17 0.0070 

IMBM (ITN=4) 1.2868(−08) 123 17 0.0230 

1

64
 

ABM4 5.8346(−09) 264 64 0.1974 
2PBM4 3.5212(−09) 196 33 0.1753 
IMBM (ITN=3) 1.2333(−07) 189 33 0.0260 
IMBM (ITN=4) 1.6238(−09) 251 33 0.1080 

ABM4 4.2190(−10) 520 128 0.4003 
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1

128
 

2PBM4 2.1345(−10) 388 65 0.2810 
IMBM (ITN=3) 1.6320(−08) 381 65 0.0720 
IMBM (ITN=4) 1.3081(−10) 507 65 0.1670 

1

256
 

ABM4 2.8199(−11) 1032 256 0.6155 
2PBM4 1.3136(−11) 772 129 0.4391 
IMBM (ITN=3) 2.0975(−09) 765 129 0.1810 
IMBM (ITN=4) 9.1398(−12) 1019 129 0.2060 

 
The results shows the performance of the implicit multistep block method which has been 
derived earlier. This method is compared with two other methods which are ABM4 and 
2PBM4 with the same order. In Table 1, the maximum error of IMBM is comparable 
compared to 2PBM4 and due to less number of total function calls and shortest execution 
time taken, IMBM is cheaper than ABM4 and 2PBM4 when solving the linear problem of 
VIDE in Problem 1. 
 
Table 2 – 4 display the numerical results of the derived method when solving the nonlinear 
problem of VIDE. The results of ABM4 and 2PBM4 are slightly better compared to IMBM4 
when the step size decreases. However, when the number of iteration increased, the 
IMBM4 is able to yield more accurate results than the other methods. The IMBM4 
managed to reduce by almost half of the total steps taken of ABM4. The number of total 
function calls of IMBM4 at the fourth iteration is larger than 2PBM4 however, the execution 
time taken by IMBM4 at the fourth iteration is less than ABM4 and 2PBM4 at different 
step sizes. Thus, with IMBM4, the cost per step is much cheaper even with better 
accuracy. 
 
Conclusion 
We have proposed the implicit multistep block method for the numerical solution of VIDE 
of the second kind. The implicit multistep block method have been adapted to solve the 
VIDE and further implemented in predictor-corrector scheme. From the numerical results, 
it is obviously shown that the proposed method is suitable to solve VIDE. 
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CHAPTER 6 

NUMERICAL COMPUTATION FOR SOLVING BOUNDARY VALUE PROBLEMS 

WITH ROBIN CONDITIONS 

Abstract 

 

The aim of this study is to find the numerical solutions of second order linear and nonlinear 
boundary value problems (BVPs) with Robin boundary conditions. We implement the 
direct method of Adams Moulton of order four together with shooting technique to 
compute the approximate solutions. The missing guessing values are calculated using 
Newton’s divided difference formula. All the formulas are verified by considering 
numerical examples. The numerical results are presented and compared with the exact 
solutions, and also with the solutions of the establish Runge-Kutta order four method. Our 
results provide an efficient performance and good accuracy in all cases. 
 
Keywords: Robin boundary conditions, shooting method, direct method, Newton’s divided 
difference 

Introduction 

 

 
Many real life applications that related to science and engineering can be modelled 

using linear and nonlinear differential equations of two point boundary value problems 
(BVPs). Due to that, researchers are actively focusing on the investigation that involved 
the improvement of their method which contributes to high accuracy result. Some 
researchers obtained the numerical solution for second order BVPs using collocation 
framework including Sinc collocation method (Bialecki, 1991) and the combination with 
Haar wavelet (Kaur, Mittal, & Mishra 2011). Besides that, boundary value problems that 
deals with Dirichlet condition had been solved by Erdogan and Ozis (2011) and they had 
obtained the numerical result using a new kind of finite difference scheme. Later, studied 
by Lang and Xu (2012) present a new quantic B-spline that able to reduce computational 
cost and at the same time overcome the limitation occur in quadratic and cubic spline 
when solving BVPs with mixed conditions. Adomian decomposition method discussed in 
detail by Duan et al. (2013) that showed their interest in solving two point BVPs with 
analytic approximation solution and followed by the numerical simulation. The 
development of a new cubic Hermite collocation method for solving all three conditions, 
Dirichlet, Neumann and Robin had been considered in the study report by Ganaie, Arora, 
and Kukreja (2014). Again, Adomian decomposition method has been discussed by Rach 
et al. (2016) that highlight on solving multipoint and higher order BVPs with Robin 
conditions. Meanwhile, Omar (2016) solved directly second order BVPs with the 
implementation of conventional Taylor's approximation in deriving the approximation 
formula. 
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Numerous literatures gave more attention on solving the nonlinear BVPs compared 
to linear problems since nonlinear have the ability to model various phenomena in wide 
areas. One of the established techniques for solving nonlinear BVPs is shooting methods. 
Shooting methods are quite general and very straightforward in terms of problem analysis 
and preparation. Due to shooting behaviour that uses trial and error procedure, one 
attempt to get the approximate result as close as possible to the BVPs using systematic 
and some specific approach. Roberts and Shipman, (1967) suggested a continuation 
method to determine the initial guessing that possible to break out the cycle of guessing 
which normally occurs in the conventional shooting method. While Keller (1971) 
demonstrated that Newton's method gave a very powerful shooting procedure in 
theoretical and practical determination of missing initial condition and hence for solving 
the BVPs. This approach of guessing also implemented in Ha (2001) for solving nonlinear 
BVPs.  Next, See et al. (2011) combined three iterative methods together with Newton's 
technique as an improvement to the iterative process in solving nonlinear problem with 
Dirichlet condition via shooting methods. 

 

In this study, we are focus on solving second order BVPs subject to Robin conditions 

that can be written in general form as follows 

( , , ),y f x y y a x b                                                   (1) 

with Robin boundary conditions 

    1 2( ) ( )c y a c y a     and 3 4( ) ( )c y b c y b                           (2) 

where 1 2 3 4 0c c c c     and 1 2 3 4, , , , , ,a b c c c c   and   are all constants. The BVPs as (1) 

will be solved using fourth order direct method via shooting technique with constant step 

size. The authors have used the formula derived in Majid et al. (2011) and motivated to 

extend their work by solving BVPs with Robin boundary conditions. In their study, they 

implement Newton’s method as the iterative procedure to estimate the guessing values 

whilst in this study we will introduce Newton’s interpolation technique.  

Material and Methods 

 

The approximate solution of point 1ny   at 1nx   are obtained by integrating (1) once and 

twice. Then, to successfully evaluate the integral, the ( , , )f x y y  term is replaced with 

Lagrange interpolation formulas where the number of the interpolating points chosen 
depend on the order of the predictor and corrector formula. In this study, we compute the 

solution of 1ny   using the predictor and corrector formula as discussed in Majid et al. 

(2011) .  

The predictor and corrector formulas of order four used is as follows 
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1 1 2

2

1 1 2

(23 16 5 )
12

(19 10 3 ).
24

n n n n n

n n n n n n

h
y y f f f

h
y y hy f f f

  

  

    

    

      (3) 

1 1 1 2

2

1 1 1 2

(9 19 5 )
24

(38 171 36 7 ).
360

n n n n n n

n n n n n n n

h
y y f f f f

h
y y hy f f f f

   

   

     

     

    (4) 

Two additional values are required at the beginning of the calculation before continued 
with the multistep method procedure until the end of the interval. These starting values 
are obtained using one step method. This computation is adapted with shooting methods 
where the calculation must start with the idea of deciding the appropriate initial guess that 
result in “hit or miss” iterative process. For every new guessing, one step method will play 
a role again to give the starting values for the next new computation. All the calculation is 
done by developing the C programming code.  

Implementation of the shooting technique 
 

Let us now write (1) and (2) as  

( , , )y f x y y   with 1 1( ) ( )y a C y a V    and 2 2( ) ( )y b C y b V      (5) 

where 2 4
1 1 2

1 1 3

, ,
c c

C V C
c c c


    and 

2

3

.V
c


   

In this study, we also represent the terminal condition as   2( ), ( ) .g y b y b V   Our aim in 

this shooting algorithm is to convert the Robin boundary value problems to two initial value 
problems (IVPs). Robin type required a set of initial guesses to initiate the calculation.  
Translate BVPs in (5) into two initial value problems (IVPs) as 

( , , )j j jy f x y y                  (6) 

with conditions 

(i)   0 0( ) ,y a s  
0 1 1 0( ) ( ).y a V C y a        (7) 

Compute the approximate solutions using the formula in (3) and (4). We obtained the first 
stopping condition as 

                                               0 0 2( ), ( ) .g y b y b V TOL        (8) 
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If this is sufficiently close to the terminal condition, then the BVPs is solved. Otherwise, 
set 

(ii)  1 1( ) ,y a s  
1 1 1 1( ) ( ).y a V C y a        (9) 

Repeat the entire process and obtained the second stopping condition 

                                                 1 1 2( ), ( ) .g y b y b V TOL                (10) 

The starting values for 0s and 1s  are chosen as 0 and 1 respectively based on the 

consideration in Robert (1979). This “hit and miss” iterative process is continued until we 

reached the thj  stopping condition 

  2( ), ( ) .j jg y b y b V TOL                (11) 

The value of ( )j jy a s can be updated by Newton’s divided difference formula.    

Result and Discussion 

 

One linear and two nonlinear problems have been used as a tested problem to verify the 

accuracy and efficiency of DAM4R. The entire numerical examples used the step size of 

0.1,0.05h   and 0.01  with the 510 .TOL   

The following notations are used in the tables. 

MAXE  Maximum absolute error 

AVE  Average absolute error 

ITN  Total iteration of guessing values 

TS  Total step at last iteration 

FCN  Total function call 

TIME  Computational times in seconds 

h  Step size 

DAM4R Direct Adams Moulton method of order four with Robin conditions 

RK4  Runge-Kutta order four  

MTD  Method 

 

 

Problem 1 Given linear BVPs  

2cos( ),
2

y y x x
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subject to 3 1
2 2

y y
    

      
   

and    4 4.y y                       (12) 

The exact solution is ( ) cos( ).y x x  Source : Islam and Shirin (2011). 

Problem 2 Given nonlinear BVPs 

 2 21
( 4( ) ), 0 1

8

yy e y x        

subject to 2 (0) (0) 1y y     and 
2 3

2 (1) (1) log .
3 2

y y
 

     
 

              (13) 

The exact solution is 
2

( ) log .
2

x
y x

 
  

 
 Source : Duan et al. (2013). 

 

Problem 3 Given nonlinear BVPs  

2 21
( ( ) ), 0 1

2

xy e y y x       

subject to (0) (0) 0y y    and (1) (1) 2 .y y e                 (14) 

The exact solution is ( ) .xy x e  Source : Duan et al. (2013). 

 

Table 1: Comparison of the numerical result for solving problem 1 

 with 3.141592654   

MTD h MAXE AVE TS FC TIME ITN 

 0.1 3.0066e-6 2.1851e-6 10 101 0.0203 3 
DAM4R 0.05 4.8417e-7 1.2051e-7 20 49 0.0220 1 
 0.01 1.5513e-9 5.5987e-10 100 114 0.0500 1 
 0.1 2.1185e-6 7.6729e-7 10 240 0.0310 3 
RK4 0.05 6.0277e-7 2.4430e-7 20 160 0.0230 1 
 0.01 4.9887e-10 1.7028e-10 100 800 0.1567 1 

 
 

Table 2: Comparison of the numerical result for solving problem 2 

MTD h MAXE AVE TS FC TIME ITN 

 0.1 5.9272e-7 2.3282e-7 10 32 0.0160 1 
DAM4R 0.05 1.1959e-9 7.3206e-10 20 34 0.0210 1 
 0.01 5.5710e-12 2.0472e-12 100 114 0.0523 1 

 0.1 8.6220e-8 5.8037e-8 10 80 0.0160 1 
RK4 0.05 5.2899e-9 3.4351e-9 20 160 0.0310 1 
 0.01 8.3330e-12 5.2482e-12 100 800 0.0577 1 
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Table 3: Comparison of the numerical result for solving problem 3 

MTD h MAXE AVE TS FC TIME ITN 

 0.1 7.9048e-7 6.5440e-7 10 56 0.0160 2 
DAM4R 0.05 6.4796e-7 1.9446e-7 20 64 0.0260 2 
 0.01 1.1912e-9 3.3210e-10 100 228 0.0573 2 

 0.1 2.0701e-6 1.5806e-6 10 320 0.0260 4 
RK4 0.05 5.2405e-7 1.9199e-7 20 320 0.0234 2 
 0.01 8.7853e-10 3.0406e-10 100 1600 0.0573 2 

 

Table 1 display that MAXE for DAM4R are comparable with RK4. DAM4R also 

gave a superiority result in term of function calls and time computation. This output aligned 

with the nature of DAM4R algorithm that solved the second order BVPs directly. Among 

all tested problem, problem 2 gave the smallest MAXE for DAM4R and also comparable 

to RK4 as describe in Table 2. In addition, this result also illustrate the most efficient 

performance for DAM4R since the results converge rapidly with less execution time. Only 

one iteration is required for guessing value too sufficiently close to the end boundary for 

all step size. DAM4R achieved a better MAXE with less number of guessing at 0.1h   

than RK4 as stated in Table 3. We also observed that as the step size getting smaller, 

the MAXE, AVE as well as iteration for guessing decrease for both DAM4R and RK4 as 

shown in Tables 1 – 3.  

Conclusion 

 

In this study, we have shown that the direct Adam Moulton formula of order four derived 

in Majid et al. (2011) for solving second order BVPs with Dirichlet and Neumann 

conditions able to be implement in solving Robin BVPs. The results also illustrate that 

Newton’s interpolation formula is a good alternative in choosing the missing guessing 

values which give rapidly converge in order to satisfy the end boundary.  Overall, the 

results of DAM4R show a good competitive performance compared to the exact value 

and the well-known Runge-Kutta order four method in all cases. 
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CHAPTER 7  

HYBRID ONE–STEP BLOCK METHOD WITH ONE-OFF STEP FOR SOLVING FIRST 

ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 

 

Abstract 
 

Numerical solutions of the first order linear and nonlinear Volterra integro-differential 
equation (VIDE) of second kind are discussed. The hybrid one-step block method with 
one-off step are derived using the Lagrange interpolating polynomial. VIDE is an equation 
which is the unknown function appears under the derivative and integral terms. Therefore, 
the hybrid one-step block method together with numerical quadrature rules are applied 
for solving the second kind of VIDE using constant step size. Two different approaches 
are proposed to solve for two cases where kernel equal one and kernel not equal one. 
Numerical results are given and the accuracy and efficiency of the schemes are 
discussed. 
 
Keywords: Volterra integro-differential equation, Lagrange interpolating polynomial, 
Hybrid one-step block method, Quadrature rule 
 
 

Introduction 
 
The linear and nonlinear integro-differential equations arise in many practical applications 
such as semiconductor devices, heat transfer and electrical circuit analysis. Many 
researchers have been working for solutions on VIDE problems as it plays an important 
role in real life problems. Day (1967) has presented numerical solution using quadrature 
rules for solving the linear integro-differential equations. In this paper, we consider the 
equation with difference kernels of the form Linz (1985) as  
 
𝑘(𝑥, 𝑠) = 𝑘(𝑥𝑠).           (1) 
 
The linear VIDE of the second kind is 
 

𝑦(𝑥) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝑦(𝑠)𝑑𝑠
𝑥

0
.         (2) 

 
Nonlinear VIDE, is 
 

𝑦(𝑥) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝐻(𝑠, 𝑦(𝑠))𝑑𝑠
𝑥

0
        (3) 

 
under the conditions 

i. 𝑔(𝑥) is a continuous function in 0 ≤ 𝑥 ≤ 𝑋. 
ii. The kernel 𝐾(𝑥, 𝑠) is continuous in 0 ≤ 𝑥 ≤ 𝑋, −∞ ≤ 𝑦 ≤ ∞. 
iii. The kernel satisfies the Lipschitz condition. 
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|𝐾(𝑥, 𝑠, 𝑦1)𝐾(𝑥, 𝑠, 𝑦2)| ≤ 𝐿|𝑦1𝑦2| 
 

for all 0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑋, and all 𝑦1, 𝑦2. 
 
Wazwaz (2010), has used the variational iteration method (VIM) in solving the linear and 
nonlinear VIDE problems. Numerical results shown that the VIM method is suitable for 
solving the linear and nonlinear VIDE. 
 
In recent years, several one-step methods had been applied to solve problems in VIDE 
of the second kind. Based on Filiz (2013a), the various methods such as Runge-Kutta, 
explicit and implicit Euler method have been used to solve VIDE for the ordinary 
differential equation (ODE) parts and quadrature rules for the integral parts. Filiz (2013b) 
have proposed a Runge-Kutta-Verner method and paired with Newton-Cotes quadrature 
rule to determine the numerical solution of nonlinear VIDE. The method has shown the 
applicability and efficiency in solving VIDE problems. 
 
.  Mohamed and Majid (2015) have presented a one-step block method to solve the 
linear VIDE problems. They have implemented the two-point block one-step method 
together with quadrature rules for solving VIDEs. The results indicate that the proposed 
block method is suitable to solve VIDEs. Therefore, we developed one-step method which 
is the two-point hybrid block one-step method to solve the ODE part and the composite 
Simpson’s rule are adapted to solve the integral part of the VIDE problems. 
 
Derivation of Two-Point Hybrid Block One Step Method 
 

The two points, 𝑦𝑛+1 and 𝑦𝑛+2 are simultaneously found in a block. In the derivation of the 
corrector formulae, points {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+

3

2

, 𝑥𝑛+2} are used by applying Lagrange 

interpolating polynomial. First, let 𝑥𝑛+1=𝑥𝑛 + ℎ, therefore,  
 

∫ 𝑦′𝑑𝑥 =
𝑥𝑛+1

𝑥𝑛
∫ 𝐹(𝑥, 𝑦, 𝑧)𝑑𝑥

𝑥𝑛+1

𝑥𝑛
, 

𝑦(𝑥𝑛+1) − 𝑦(𝑥𝑛) =  ∫ 𝐹(𝑥, 𝑦, 𝑧)𝑑𝑥
𝑥𝑛+1

𝑥𝑛
.        (4) 

 

𝐹(𝑥, 𝑦, 𝑧) in (2) is replaced by applying Lagrange interpolating polynomial of order 4. Then 

taking =
𝑥−𝑥𝑛+1

ℎ
 , 𝑑𝑥 = ℎ𝑑𝑠 and changing the limit of integration from -2 to -1 yield to 

 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(2𝐹𝑛 + 7𝐹𝑛+1 − 4𝐹

𝑛+
3

2

+ 𝐹𝑛+2).       (5) 

 

Now taking 𝑥𝑛+2 = 𝑥𝑛+1 + ℎ and the corrector formula is derived in the same manner. The 
integrating involved at the point from 𝑥𝑛+2 to  𝑥𝑛+1 
 

∫ 𝑦′𝑑𝑥 =
𝑥𝑛+2

𝑥𝑛+1
∫ 𝐹(𝑥, 𝑦, 𝑧)𝑑𝑥

𝑥𝑛+2

𝑥𝑛+1
.         (6) 

 



47 
 
 

For the second corrector formulae, replace 𝑑𝑥 = ℎ𝑑𝑠 and change the limit of integration 
from -1 to 0. Solve equation (6) using MAPLE to obtain the formula as follows. 
 

 𝑦𝑛+2 = 𝑦𝑛+1 +
ℎ

6
(𝐹𝑛+1 + 4𝐹

𝑛+
3

2

+ 𝐹𝑛+2).                  (7) 

 
Hence, the formulae of the two- point block method are 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(2𝐹𝑛 + 7𝐹𝑛+1 − 4𝐹

𝑛+
3

2

+ 𝐹𝑛+2) and 

𝑦𝑛+2 = 𝑦𝑛+1 +
ℎ

6
(𝐹𝑛+1 + 4𝐹

𝑛+
3

2

+ 𝐹𝑛+2).                  (8) 

 
The formula for the constants 𝐶𝑞 will apply to determine the order of this method. The 

general formula is defined as follows: 
 

𝐶0 = ∑𝛼𝑗

𝑘

𝑗=0

 

𝐶1 = ∑𝑗𝛼𝑗 − ∑𝛽𝑗 −

𝑘

𝑗=0

𝑘

𝑗=0

∑𝛽𝑣𝑗

𝑘

𝑗=1

 

. 

. 

. 

𝐶𝑞 =
1

𝑞!
[∑ 𝑗𝑞𝛼𝑗 − 𝑞(∑ 𝑗𝑞−1𝛽𝑗 + ∑ 𝑣𝑗𝑞−1𝛽𝑣𝑗)]

𝑘
𝑗=1

𝑘
𝑗=0

𝑘
𝑗=0 , where q= 2, 3,4, …    (9) 

 
Thus, the order of the method is four where the coefficient of error constant is 
 

𝐶𝑝+1 = 𝐶5 = [−
31

2880
−

1

2880
]
𝑇

≠ [0 0]𝑇 .                (10) 

 
Here the stability region of the method together with Simpson’s rule is discussed and the 
method is applied to the test equation. 
 

𝑦′(𝑥) = 𝜉𝑦(𝑥) + 𝜂 ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
,                  (11) 

 

where 𝜉 and 𝜂 are real constants. Therefore, from the combinations of the method the 
stability polynomial is obtained and from that we can plot the region of absolute stability. 
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Figure 1. Stability region for hybrid block method. 

 
Figure 1 shown the stability region for the method then the region of absolute stability lies 
inside the boundary. 
 
Implementation for Solving VIDEs 
 
We proposed two different type of methods as a predictor which is Euler’s method and 

one-off step point. We will approximate 𝑦𝑛+1 and 𝑦𝑛+2 in Equation (8) by applied the block 
method to the differential part of VIDE. Similar technique is applied to generate the explicit 
method as a predictor. 
 

𝑦𝑛+1
𝑝 = 𝑦𝑛 +

ℎ

2
[𝐹(𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛)]                (12) 

𝑦𝑛+2
𝑝 = 𝑦𝑛+1 +

ℎ

2
[𝐹(𝑥𝑛+1 , 𝑦𝑛+1 , 𝑧𝑛+1)]               (13) 

𝑦
𝑛+

3

2

𝑝
= 𝑦𝑛 +

ℎ

8
[3𝐹(𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) + 9𝐹(𝑥𝑛+1 , 𝑦𝑛+1 , 𝑧𝑛+1)]                       (14) 

𝑦𝑛+1
𝑐 = 𝑦𝑛 +

ℎ

6
[2𝐹(𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) + 7𝐹(𝑥𝑛+1 , 𝑦𝑛+1 , 𝑧𝑛+1) − 4(𝐹 (𝑥

𝑛+
3

2
 
, 𝑦

𝑛+
3

2
 
, 𝑧

𝑛+
3

2

) +

               𝐹(𝑥𝑛+2 , 𝑦𝑛+2 , 𝑧𝑛+2)]                (15) 

𝑦𝑛+2
𝑐 = 𝑦𝑛+1 +

ℎ

6
[𝐹(𝑥𝑛+1 , 𝑦𝑛+1 , 𝑧𝑛+1) + 4(𝐹 (𝑥

𝑛+
3

2
 
, 𝑦

𝑛+
3

2
 
, 𝑧

𝑛+
3

2

) + 𝐹(𝑥𝑛+2 , 𝑦𝑛+2 , 𝑧𝑛+2). 

                   (16) 
 

Thus, to generate the values of 𝑧1 and 𝑧2 we used modified Simpson’s 1 3⁄  and standard 

Simpson’s 1 3⁄  respectively, 

𝑧1 = 𝑧0 +
ℎ

3
[𝐾(𝑥1, 𝑥0, 𝑦0) + 4𝐾(𝑥1, 𝑥1

2

, 𝑦1

2

) + 𝐾(𝑥1, 𝑥1, 𝑦1)]                    (17) 

 

𝑧2 = 𝑧0 +
ℎ

3
[𝐾(𝑥2, 𝑥0, 𝑦0) + 4𝐾(𝑥2, 𝑥1, 𝑦1) + 𝐾(𝑥2, 𝑥2, 𝑦2)].            (18) 
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Next, the values for 𝑧𝑛+1 and 𝑧𝑛+2 are calculated by applied composite Simpson’s rule 
with interpolation schemes. Given 𝑛 = 2,4,6, …, we can formulate 
 

𝑧𝑛+1 =
ℎ

3
∑ 𝜔𝑖

𝑠𝐾(𝑛
𝑖=0 𝑥𝑛+1, 𝑥𝑖 , 𝑦𝑖) +

ℎ

6
[𝐾(𝑥𝑛+1, 𝑥𝑛, 𝑦𝑛) + 4𝐾(𝑥𝑛+1, 𝑥𝑛+

1

2

, 𝑦
𝑛+

1

2

) +

              𝐾(𝑥𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1)]                   (19) 

𝑧𝑛+2 =
ℎ

3
∑ 𝜔𝑖

𝑠𝐾(𝑛+2
𝑖=0 𝑥𝑛+2, 𝑥𝑖 , 𝑦𝑖).                (20) 

 
Here, 𝑦

𝑛+
1

2

 is unknown value where is can be estimated using Lagrange interpolating 

polynomial at points {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2} and yield 
 

𝑦
𝑛+

1

2

= 𝑦𝑛 +
ℎ

8
(3𝐹𝑛 + 𝐹𝑛+1).                           (21) 

 
Numerical Result 
 
In this part, in order to validate the performance of the method, we solve four problems 
with different condition and we will compare the results with the existing method.  
 
Problem 1 

𝑦′(𝑥) = 1 − ∫ 𝑦(𝑥)𝑑𝑠
𝑥

0
    𝑦(0) = 0,  0 ≤ 𝑥 ≤ 1 

 

Exact solution: 𝑦(𝑥) = sin(𝑥). 
Source: Mohamed and Majid (2015). 
Problem 2 

𝑦′(𝑥) =
4

3
𝑒−𝑦(𝑥) −

1

3
𝑥3 +

4

3
∫

1

𝑥
𝑠2𝑒𝑦(𝑠)𝑑𝑠

𝑥

1
  𝑦(1) = 0,  1 ≤ 𝑥 ≤ 2 

Exact solution: 𝑦(𝑥) = ln(𝑥). 
Source: Mehdiyeva et. al (2013). 
 
Problem 3 

𝑦1
′(𝑥) = 1 + 𝑥 + 𝑥2 − 𝑦2(𝑥) − ∫ (𝑦1(𝑠) + 𝑦2(𝑠))

𝑥

0
𝑑𝑠 𝑦1(0) = 1, 

𝑦2
′(𝑥) = 1 − 𝑥 − 𝑥2 + 𝑦2(𝑥) − ∫ (𝑦1(𝑠) − 𝑦2(𝑠))

𝑥

0
𝑑 𝑦2(0) = −1.  

 

Exact solution: 𝑦1(𝑥) = 𝑥 + 𝑒𝑥 and 𝑦2(𝑥) = 𝑥 − 𝑒𝑥 . 
Source: Berenguer et. al (2013). 
  
Problem 4 

𝑦1
′(𝑥) = 2𝑦2(𝑥) −

1

3
𝑥4 + cos(𝑦1(𝑥)) − 1 + ∫ (2𝑠 sin(𝑦1(𝑠)) + 𝑠𝑥𝑦2(𝑠))𝑑𝑠

𝑥

0

, 

𝑦2
′(𝑥) = 1 − 𝑥 sin(𝑦2(𝑥)) −

1

2
𝑥2 sin(𝑦1(𝑥)) + ∫ (𝑠𝑥2 cos(𝑦1(𝑠)) + 𝑥𝑐𝑜𝑠(𝑦2(𝑠)))𝑑𝑠

𝑥

0

, 

𝑦1(0) = 0 and 𝑦2(0) = 0. 
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Exact solution: 𝑦1(𝑥) = 𝑥2and 𝑦2(𝑥) = 𝑥. 
Source: Berenguer et. al (2013). 
 
 

Table 1: Comparison between TPHB and RK4 for Problem 1 
 
 

 
 

Table 2: Comparison between TPHB and ABM4 for Problem 2 
 
 

 
 

Table 3: Comparison between VIM and TPHB for Problem 3 
 
 

 
 
 
 
 
 
 

METHOD h MAXE TS TFC TIME(s)

0.025 2.1973E-07 20 120 0.0684

0.0125 1.9761E-10 40 240 0.133

0.00625 9.3579E-11 120 480 0.1913

0.025 1.4271E-07 40 160 0.1398

0.0125 1.7477E-08 80 320 0.1896

0.00625 2.1622E-09 160 640 0.3338

TPHB

RK4

METHOD h MAXE TS TFC TIME(s)

0.03125 1.2976E-08 16 96 0.0952

0.015625 7.9318E-09 32 192 0.1733

0.0078125 9.1795E-11 64 384 0.2679

0.03125 6.5536E-08 32 136 0.3125

0.015625 5.8346E-09 64 264 0.1974

0.0078125 4.2190E-10 128 520 0.4003

TPHB

ABM4

y1 y2 y1 y2

0 1 -1 1 -1

0.2 2.7480E-06 2.7480E-06 3.1317E-06 3.1297E-06

0.4 8.9999E-05 8.9999E-05 9.8759E-05 7.5974E-05

0.6 6.9492E-04 6.9492E-04 5.4976E-04 5.5019E-04

0.8 2.9578E-03 2.9578E-03 1.7953E-04 1.8091E-04

1 9.0556E-03 9.0556E-03 4.4545E-04 4.4499E-04

TS

TFC

TIME(s)

x
VIM TPHB

0.01625-

6

30

-

-
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Table 4: Comparison between VIM and TPHB for Problem 4 
 
 

 
 
 

   Step size 
TS   Total of step 
TFC   Total function call 
TIME(s)  Execution time in seconds 
MAXE   Maximum error for the computed solution. 
ABM4 Adam Bashforth of order 4 combined with approach in Case I and Case II. 
TPHB   Two-point hybrid block. 
RK4 Runge-Kutta method of order 4 with Simpson 1/3 rule by Filiz (2013). 
VIM Variational iteration method by Saberi, J. et. al (2008) 

 
 
In this section, we discussed the numerical results that have been tabulated with different 
step sizes. The numerical result for Problem 1 presented that the TPHB method has 
performed better than RK4.  It can be observed from the Table 1 where the maximum 
error for the TPHB is better than RK4. In terms of total steps, total function calls and 
execution time, we concluded that the TPHB is less costly than the RK4. Then, TPHB 
method is applied to solve kernel not equal one for the nonlinear problems and the results 

are shown in Table 2. When ℎ = 0.0078125, the MAXE of TPHB is better than ABM4 and 
the number of function calls taken by TPHB is less than ABM4. The numerical results for 

problems 3 and 4 with ℎ = 0.2 and ℎ = 0.1 are presented in Table 3 and 4 respectively. 
We observed that the MAXE of TPHB is comparable compared to VIM. 
 
Conclusion 
 
In this study, we proposed hybrid one-step block method with one-off step together with 
quadrature rules for solving linear and nonlinear VIDEs. We conclude that combination of 
the block method together with quadrature rules is appropriate for solving VIDEs. This 
proposed method is efficient and economically.   
 

y1 y2 y1 y2

0 0 0 0 0

0.2 2.9592E-05 1.6362E-06 1.9763E-06 1.9971E-06

0.4 2.2480E-04 1.3064E-05 5.5549E-05 6.0917E-06

0.6 7.4203E-04 2.7894E-05 8.8879E-04 9.1919E-05

0.8 1.7055E-03 1.3135E-04 1.6937E-04 2.5859E-04

1 3.1011E-03 4.8173E-04 4.5179E-03 8.9497E-03

TS

TFC

TIME(s)

-

-

x
VIM TPHB 

- 10

60

0.0335
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CHAPTER 8 

DEVELOPMENT NEW TWO DERIVATIVE RUNGE-KUTTA-NYSTR�̈�M METHOD FOR 

SOLVING 𝒚′′ = 𝒇(𝒙, 𝒚, 𝒚′) 

 
Abstract 
 

In this paper, we extend the classical Runge-Kutta-Nyström (RKN) methods for the 
general second order ordinary differential equations  𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) to two derivative 

Runge-Kutta-Nyström methods (TDRKN) by including the third derivative of the solution 
that possess one evaluation of first derivative and many evaluations of second and third 
derivative per step. A two-stage explicit TDRKN method of order four is derived. The 
formulation used for the derivation of the new method is developed. The linear stability of 
the new method is also given.  The experimental results for some problems are showed. 
The results obtained of numerical calculations showed that the new TDRKN method is 
more efficient than the standard explicit RKN methods for the general second order 
ordinary differential equations of the same algebraic order. 
 

Keywords: Two Derivative Runge-Kutta-Nyström methods, Second Order Ordinary 
Differential Equations, Initial Value Problems. 
 
1. Introduction 
 
In this paper, consider the numerical integration of the initial value problem (IVPs) of 
second-order ODEs of the form: 
 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),    𝑦(𝑥0) = 𝑦0   , 𝑓: ℛ × ℛ𝑛 × ℛ𝑛 → ℛ𝑛                                      (1) 
 
This  kind of problems arise in variety fields of applied science such as Kepler problems 
in quantum physics, celestial mechanics, Newton's second law in classical mechanics, 
LRC circuit in physics and concentration in chemical or biological problems so on, see 
([1],[2],[3],[4],[14],[15]). 
In recent decades, many authors have been proposed and developed several numerical 
methods for solving (1), for instance, A collocation approach which produces a family of 
order six continuous methods has been described for the approximate solution of problem 

(1) by Awoyemi [9]. Franco [11] constructed a type of adapted Runge-Kutta-Nyström 

methods (ARKN) for the numerical methods of nonstiff second order IVPs 𝑦′′ + 𝜔2𝑦 =
𝑓(𝑥, 𝑦, 𝑦′) . Wu and Wang [6] constructed three novel multidimensional ARKN for 
oscillatory systems. Jator [10] derived a piecewise continuous hybrid third derivative 
approximation (CHTDA) that is defined for all values of the independent variable on the 

range of interest. You et al.[8] extended  Runge-Kutta-Nyström methods  (ERKN) to the 
integration of the general second-order differential equation in y′′ + My = f(x, y, y′) where 
M is a positive semi-definite matrix containing implicitly the frequencies of the problem. 
Very recently, Chen et al. [12] extended classical RKN to two-derivative RKN methods 
involving the third derivative of the solution. 
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This paper is organized as follows. In section 2, we derived the new method of order four. 
The linear stability analysis of the TDRKN are discussed in section 3 and in section 4, the 
numerical experiment is given to show the accuracy and efficiency of the new method.  
 
2. Derivation of method 
 

In this part, a new method of two derivative Runge-Kutta-Nyström methods of order 4 is 
derived. For many problems in applications, the derivative the third derivative for (1) is 
known, 
 

𝑦(3)  (𝑥) =  𝑔(𝑥, 𝑦, 𝑦′ ) =  𝑓𝑥 +  𝑓𝑦𝑦′ + 𝑓𝑦′𝑓 , 𝑔: ℛ × ℛ𝑛 × ℛ𝑛 → ℛ𝑛 

A two derivative Runge-Kutta-Nyström methods obtained by using third derivative in 
classical Runge-Kutta-Nyström methods is given as follows: 

𝑦𝑛+1  = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 ∑𝑏𝑙𝑘𝑖

𝑠

𝑖=1

+ ℎ3 ∑ 𝑑𝑙𝑘𝑖
′

𝑠

𝑖=1

                                                                                           (2)  

  

𝑦𝑛+1
′  = 𝑦𝑛

′ + ℎ ∑𝑒𝑙𝑘𝑖

𝑠

𝑖=1

+ ℎ2 ∑𝑔𝑙𝑘𝑖
′

𝑠

𝑖=1

 

𝑘𝑖  = 𝑓 (𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 ∑𝑏𝑙𝑎𝑖.𝑗

𝑠

𝑗=1

+ ℎ3 ∑𝑑𝑙

𝑠

𝑗=1

𝑟𝑖.𝑗, 𝑦𝑛
′ + ℎ ∑𝑒𝑙𝑠𝑖.𝑗

𝑠

𝑗=1

+ ℎ2 ∑ 𝑔𝑙𝑡𝑖.𝑗

𝑠

𝑗=1

) 

𝑘𝑖
′  = 𝑓 (𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ𝑦𝑛

′ + ℎ2 ∑𝑏𝑙𝑎𝑖.𝑗

𝑠

𝑗=1

+ ℎ3 ∑ 𝑑𝑙

𝑠

𝑗=1

𝑟𝑖.𝑗, 𝑦𝑛
′ + ℎ ∑𝑒𝑙𝑠𝑖.𝑗

𝑠

𝑗=1

+ ℎ2 ∑ 𝑔𝑙𝑡𝑖.𝑗

𝑠

𝑗=1

) 

where 𝑖 = 1,… , 𝑠  and 𝑎𝑖,𝑗  , 𝑟𝑖,𝑗 , 𝑠𝑖,𝑗 , 𝑡𝑖,𝑗 , 𝑏𝑖  𝑏𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑔𝑖  are real numbers. 

An alternative expression of the scheme (2) is as follows: 
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𝑦𝑛+1  = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 ∑𝑏𝑖𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖, 𝑌𝑖

′)

𝑠

𝑖=1

+ ℎ3 ∑ 𝑑𝑖𝑔(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖 , 𝑌𝑖
′)

𝑠

𝑖=1

                                 (3) 

𝑦𝑛+1
′  = 𝑦𝑛

′ + ℎ ∑𝑒𝑖𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑗 , 𝑌𝑗
′)

𝑠

𝑖=1

+ ℎ2 ∑𝑔𝑖𝑔(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑗 , 𝑌𝑗
′)

𝑠

𝑖=1

 

𝑌𝑖  = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 ∑ 𝑎𝑖.𝑗𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑗 , 𝑌𝑗

′)

𝑠

𝑗=1

+ ℎ3 ∑𝑟𝑖.𝑗

𝑠

𝑗=1

𝑔(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑗 , 𝑌𝑗
′) 

𝑌𝑖
′ = 𝑦𝑛

′ + ℎ ∑𝑠𝑖.𝑗𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖, 𝑌𝑖
′)

𝑠

𝑗=1

+ ℎ2 ∑𝑡𝑖.𝑗

𝑠

𝑗=1

𝑔(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑗 , 𝑌𝑗
′) 

We can rewrite (2) in Butcher tableau as follows: (see Chen et al. [12]) 

Table 1: Butcher tableau for TDRKN methods 

𝐶 𝐴 𝑅 𝑆 𝑇

𝑏𝑇 𝑑𝑇 𝑒𝑇 𝑔𝑇
  

 

Here, we consider 𝑠 = 2.The simplifying condition for tow stage TDRKN methods are: 

𝑠21 = 𝑐2, 𝑎21 =
1

2
𝑐2

2 

From Chen et al.[12], the order conditions for two stage four order TDRKN can be given 
as follows: 

𝑏1 + 𝑏2 =
1

2
 , 𝑒1 + 𝑒2 = 1, 𝑑1 + 𝑑2 + 𝑏2𝑐2 =

1

6
 , 𝑔1 + 𝑔2 + 𝑒2𝑐2 =

1

2
 , 𝑔2𝑡21 =

1

24
     (4) 

𝑒2𝑐2
2 + 2𝑔2𝑐2 =

1

3
 , 𝑒2𝑡21 + 𝑔2𝑐2 =

1

6
 , 𝑏2𝑐2

2 + 2𝑑2𝑐2 =
1

12
, 𝑏2𝑡21 + 𝑑2𝑐2 =

1

24
 

𝑒2𝑐2
3 + 3𝑔2𝑐2

2 =
1

4
, 𝑒2𝑐2𝑡21 + 𝑔2𝑐2

2 + 𝑔𝑡21 =
1

8
 , 𝑔2𝑐2

2 =
1

12
 , 𝑒2𝑟21 + 𝑔2𝑡21 =

1

24
  

By solving the system nonlinear in (4), we get a solution with two free parameters 

𝑏2 and 𝑟21. 

The choices 𝑏2 =
1

10
 , 𝑟21 =

41

1000
  lead to the method with the coefficients: 

 𝑐2 =
1

2
, 𝑏1 =

2

5
, 𝑑1 = 𝑑2 =

7

120
, 𝑒1 = 1, 𝑒2 = 0 , 𝑔1 =

1

6
 , 𝑔2 =

1

3
  , 𝑠21 =

1

2
 ,

𝑎21 =
1

8
, 𝑡21 =

1

8
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Table 2: Butcher tableau for TDRKN2(4) method 

 

0 0 0 0 0 0 0 0 0
1

2

1

8
0

41

1000
0

1

2
0

1

8
0

2

5

1

10

7

120

7

120
1 0

1

6

1

3

 

 

 

 

3. Stability of the TDRKN4(2) Method 

In this part, the linear stability of the TDRKN4(2) method is discussed. The following test 
equation will be used (see [5],[7],[12],[13] ). 

𝑦′′ = −𝜔2𝑦 + 𝜀𝑦′                                                                                                                          (5) 
 Applying TDRKN methods (3) to test equation (5), we obtain 
 

[
𝑦𝑛+1

ℎ𝑦𝑛+1
′ ] = 𝑀(𝑣, 𝑧) [

𝑦𝑛

ℎ𝑦𝑛
′ ] 

where 

𝑀(𝑣, 𝑧) = [
𝑚11 𝑚12

𝑚21 𝑚22
] 

𝑚11 = 1 − 𝑣2(𝑏𝑇 + 𝑧𝑑𝑇)𝑁2
−1𝑒 − 𝑣2(𝑧𝑏𝑇 + (𝑧2 − 𝑣2)𝑑𝑇)𝑁1

−1(𝑆 + 𝑧𝑇)𝑁2
−1𝑒 

𝑚12 = 1 − 𝑣2(𝑏𝑇 + 𝑧𝑑𝑇)𝑁3 + (𝑧𝑏𝑇 + (𝑧2 − 𝑣2)𝑑𝑇)(𝑁1
−1𝑒 − 𝑣2𝑁1

−1(𝑆 + 𝑧𝑇)𝑁3) 
𝑚21 = −𝑣2(𝑒𝑇 + 𝑧𝑔𝑇)𝑁2

−1𝑒 − 𝑣2(𝑧𝑒𝑇 + (𝑧2 − 𝑣2)𝑔𝑇)𝑁1
−1(𝑆 + 𝑧𝑇)𝑁2

−1𝑒 

𝑚22 = 1 − 𝑣2(𝑒𝑇 + 𝑧𝑔𝑇)𝑁3 + (𝑧𝑒𝑇 + (𝑧2 − 𝑣2)𝑔𝑇)(𝑁1
−1𝑒 − 𝑣2𝑁1

−1(𝑆 + 𝑧𝑇)𝑁3) 
𝑁1 = 𝐼 − 𝑧𝑆 − (𝑧2 − 𝑣2)𝑇 

𝑁2 = 𝐼 + 𝑣2(𝐴 + 𝑧𝑅) + 𝑣2(𝑧𝐴 + (𝑧2 − 𝑣2)𝑅)𝑁1
−1(𝑆 + 𝑧𝑇) 

𝑁3 = 𝑁2
−1(𝐶 + (𝑧𝐴 + (𝑧2 − 𝑣2)𝑅)𝑁1

−1)𝑒 
 

where 𝑣 = 𝜔ℎ, 𝑧 = 𝜀ℎ, M(v, z) is called stability matrix. The stability region of 
TDRKN4(2) method is presented as follows: 
 

𝑆 𝑅 = {(𝑣;  𝑧) ∶ 𝜆𝑖(𝑀) <  1;  𝑖 =  1,2} 
 

𝜆𝑖 are eigenvalues of 𝑀(𝑣, 𝑧). 
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Figure 1: The absolute stability region of TDRKN4(2) method 

 
 
 

4. Numerical Experiments 

In this section, the effectiveness of the new method of order four tested on the some 
problems for comparison. The numerical methods used for comparison are given as 
follows: 
 

TDRKN4(2):Two-stage fourth order two-derivative RKN method derived in this 
paper. 
RKNG4: The classical four-stage fourth order RKN method derived in [2]. 
RK4: The classical four-stage fourth order RK method derived in [1]. 
 

Problem 1: 

𝑦′′ = 𝑦′ + 𝑐𝑜𝑠(𝑥) ,        𝑦(0) = −
1

2
, 𝑦′(0) =   

1

2
 , 𝑥𝑒𝑛𝑑 = 10 

The exact solution is: 

𝑦(𝑥) =
1

2
(𝑠𝑖𝑛 (𝑥) − 𝑐𝑜𝑠 (𝑥)) 

Problem 2: 

𝑦′′ =
1

40
(10 − 𝑦)𝑦′,        𝑦(0) = 1 , 𝑦′(0) =   

19

80
 , 𝑥𝑒𝑛𝑑 = 10 

The exact solution is: 𝑦(𝑥) =
20

1+19𝑒
−𝑥
4

 

Problem 3: [11] 

𝑦′′ = −𝑀𝑦 +
12𝜀

5
𝐾𝑦′ + 𝜀2𝐿(𝑥), 
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𝑀 = [
13 −12

−12 13
] , 𝐾 = [

3 2
−3 −2

] , 𝐿 = [

36

5
 𝑠𝑖𝑛 (𝑥)  +  24 𝑠𝑖𝑛 (5 𝑥)

−24

5
 𝑠𝑖𝑛 (𝑥) − 36 𝑠𝑖𝑛 (5 𝑥)

] 

     𝜀 = 0.001,    𝑦(0) = ( 𝜀, 𝜀)𝑇 , 𝑦′(0) = (−4,6)𝑇 , 𝑥𝑒𝑛𝑑 = 5 
The exact solution is: 

𝑦(𝑥) = [
 𝑠𝑖𝑛 (𝑥) −  𝑠𝑖𝑛 (5 𝑥) + 𝜀𝑐𝑜𝑠 (𝑥)

 𝑠𝑖𝑛 (𝑥) +  𝑠𝑖𝑛 (5 𝑥) + 𝜀𝑐𝑜𝑠 (5𝑥)
] 

  

Figure 2:Efficiency curve for Problem 2 for ℎ =
1

2𝑖  , 𝑖 =  1, 2, 3,4 

 
 

Figure 3:Efficiency curve for Problem 2 for ℎ =
0.8

2𝑖
, 𝑖 =  0,1, 2, 3 
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Figure 4:Efficiency curve for Problem 3 for ℎ =
0.1

2𝑖
, 𝑖 = 0,1, 2, 3 

 

 

5. Discussion 

In this section, the performance of the newly proposed method is examined by solving 
different test problems. From Figure 2, the numerical results show that the STDRKN4 
method is comparable with RKNG4 and RK4 methods for all step sizes. In Figure 3, the 
numerical result show that the TDRKN4 method is less accurate when compared with 

the RK4   method for step size ℎ = 0.1 and the TDRKN4 has less number of functions 
evaluations compared with RK4 method. 
Meanwhile, the TDRKN4 method is slightly accurate than RKNG4 method for all step 
sizes. Figure 4, demonstrate the superiority of the TDRKN4 method over RK4 method 
for all step sizes. Also, TDRKN4 method has the same order of accuracy as RKNG4 
method. 
 
6. Conclusions 

 In this study, we develop a new TDRKN method for solving IVPs of second-order  
differential equations. In this context, we get higher order (four order) than the classical 
RKN methods with the same stage. So, an advantage of the TDRKN method is that 
they can reach higher order with fewer function evaluation (see figures 2,3,4).  
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CHAPTER 9  

MHD BOUNDARY LAYER FLOW OF CARREAU FLUID OVER A STRETCHING 

SURFACE WITH SUCTION AND THERMAL RADIATION 

 

Abstract 
 
Magnetohydrodynamics (MHD) flow of Carreau fluid over a non-linear stretching 
surface with suction and convective boundary condition is studied. Non-linear 
thermal radiation is taken into account in the heat transfer analysis. The governing 
partial differential equations are transformed into non-linear ordinary differential 
equations by using similarity variables and then solved numerically by using shooting 
method. The effect of non-dimensional parameters such as the suction parameter 
𝑠, the power law index 𝑛, the radiation parameter 𝑁𝑅, the temperature ratio parameter 

𝜃𝑤, the magnetic parameter 𝑀, the Prandtl number 𝑃𝑟 and the Biot number 𝛾 on velocity, 
temperature, local skin friction and local Nusselt number are discussed and shown in 
table and graphs. It is found that suction causes both the fluid velocity and temperature 
to decrease and the presence of radiation also causes the fluid temperature to decrease.  
 
Keywords: MHD, Carreau fluid, stretching surface, suction, thermal radiation 
 
1. Introduction  
 
Non-Newtonian fluid is fluid that does not follow Newton’s law of viscosity. The viscosity 
of non-Newtonian fluid depends on the shear rate. Analysis of non-Newtonian fluid has 
gain some attention due to its wide applications in industry and engineering. The common 
example of non-Newtonian fluid is pseudoplastic fluids which appear in the flow of 
plasma and blood, in extrusion of polymer sheets, emulsion coated sheets like 
photographic films, solutions and melts of high molecular weight polymers, etc. 
However, the rheological properties of these fluids cannot be explained by Navier-
Stokes equations alone, therefore some rheological models have been presented such 
as the Carreau model, power law model, Ellis model, and Cross model.  According 
to Irgens (2014), Carreau fluid was proposed by Carreau (1968) in his Ph.D. 
thesis from University of Wisconsin. Carreau fluid is a generalized Newtonian fluid 
where viscosity depends on shear rate. At low shear rate, Carreau fluid behaves 
as Newtonian fluid while at high shear rate it behaves as power law fluid. There 
have been numerous studies about Carreau fluid. A study on blood flow through 
tapered artery is done by Akbar & Nadeem (2014) in which the blood is 
considered as Carreau fluid.  

The effect of induced magnetic field and heat transfer on peristaltic transport 
of Carreau fluid was studied by Hayat et al. (2011). Then, Vajravelu et al. (2013) 
studied the effect of velocity slip, temperature and concentration jump conditions 
on the MHD peristaltic transport of Carreau fluid. Akbar et al. (2014) discussed 
the MHD stagnation-point flow of Carreau fluid towards a permeable shrinking 
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sheet where dual solutions were obtained in this study. Later, Suneetha & 
Gangadhar (2015) studied the effect of thermal radiation on MHD stagnation-
point flow of Carreau fluid over a shrinking surface and in this study, convect ive 
boundary condition was considered for heat transfer analysis. Further, Khan et 
al. (2016a) analyzed MHD stagnation-point flow and heat transfer of Carreau 
fluid over a stretching sheet. This study was also done by considering the 
convective boundary condition. Next, Khan et al. (2016b) studied the MHD flow 
of Carreau fluid over a stretching sheet with convective boundary condition in 
the presence of non-linear thermal radiation. The heat and mass transfer in MHD 
Carreau fluid with thermal radiation and cross diffusion is then studied by 
Machireddy & Naramgari (2016). The effects of multiple slip on MHD flow of 
Carreau fluid along wedge with chemical reaction is studied by Khan & Hashim 
(2016). On the other hand, Shah et al. (2017) discussed on MHD Carreau fluid 
slip flow over a porous stretching sheet with variable thickness and thermal 
conductivity with viscous dissipation and thermal radiation. Hashim et al. (2017) 
studied the stagnation-point flow of MHD Carreau fluid over a shrinking sheet in 
the presence of non-linear thermal radiation. Recently, Hayat et al. (2017) 
studied the boundary layer flow of MHD Carreau fluid in the presence of 
Newtonian heating, chemical reaction and thermal radiation.  

Inspired by previous studies, this paper will study on the MHD flow of Carreau 
fluid with suction over a stretching sheet with convective boundary condition. The 
presence of non-linear thermal radiation is taken into account in the heat transfer 
analysis. 
 
2. Mathematical Formulation  
 
Consider a steady, laminar, two-dimensional boundary layer flow and heat 
transfer of an incompressible Carreau fluid over a stretching sheet with 
convective boundary condition. The flow is generated by non-linear stretching of 
the sheet resulting from the application of two equal and opposite forces. The 

Cartesian coordinates 𝑥 and 𝑦 are used such that 𝑥-axis is along the stretching 
sheet and 𝑦-axis is perpendicular to it. It is assumed that the flow of the fluid is 
confined to 𝑦 ≥ 0 as shown in Fig. 1. Magnetic field of strength 𝐵0 is applied in 
the direction normal to the flow and the induced magnetic field is neglected by 
the assumption of small magnetic Reynolds number. Non-linear thermal radiation 
is taken into account in the heat transfer analysis.  
 

 
Fig. 1. Schematic diagram of the problem. 



64 
 
 

The governing equations of mass, momentum and energy for the subjected 
problems are as follows,  

       
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                           (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
[1 + 𝛤2 (

𝜕𝑢

𝜕𝑦
)
2

]

𝑛−1
2

 

+𝜈(𝑛 − 1)𝛤2
𝜕2𝑢

𝜕𝑦2
(
𝜕𝑢

𝜕𝑦
)
2

[1 + 𝛤2 (
𝜕𝑢

𝜕𝑦
)
2

]

𝑛−3
2

−
𝜎𝐵0

2

𝜌
𝑢                       (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
−

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
                                                                                          (3) 

with the boundary conditions  

𝑢 = 𝑈𝑤(𝑥) = 𝑏𝑥𝑚, 𝑣 = 𝑣𝑤 ,         − 𝑘
𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑓 − 𝑇)       at       𝑦 = 0            (4) 

𝑢 → 0,                                                                   𝑇 → 𝑇∞                       as     𝑦 → ∞        (5) 
where 𝑢 and 𝑣 are the velocity components along the 𝑥 and 𝑦 directions respectively, 𝜌 

is the fluid density, 𝜈 =
𝜇

𝜌
 is the kinematic viscosity of the fluid, Γ is the material constant 

called relaxation time, 𝜎 is the electrical conductivity of the fluid, 𝑛 is the power law index, 

𝑇 is the fluid temperature, 𝑞𝑟 is the radiative heat flux, 𝛼 =
𝑘

𝜌𝑐𝑝
 is the thermal diffusivity 

with 𝑐𝑝 represents the specific heat and 𝑘 represents thermal conductivity of the fluid, 

𝑈𝑤(𝑥) is the non-linear velocity with positive real number parameters, 𝑏 and 𝑚 that are 
related to stretching speed, 𝑣𝑤 is the mass transfer velocity, ℎ𝑓 is the convective heat 

transfer coefficient, 𝑇𝑓 is the convective fluid temperature below the moving sheet and 𝑇∞ 

is the ambient fluid temperature.   

 Power law index, 𝑛 is used to determine the fluid behaviour. When the power law 
index 𝑛 = 1, it describes the fluid as Newtonian fluid. On the other hand, if 𝑛 is in the 
range of 0 < 𝑛 < 1, the fluid is said to be shear-thinning fluid and when 𝑛 > 1, the fluid is 
described as shear-thickening fluid. Based on Khan et al. (2016b), the radiative heat 
flux expression in Eq. (3) can be simplified using the Rosseland approximation,  

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                                          (6) 

where 𝜎∗ is the Stefan-Boltzmann constant and 𝑘∗ is the mean absorption coefficient. In 
considering the boundary layer flow over a horizontal flat plate, Eq. (6) can also be written 
as:  

𝑞𝑟 = −
16𝜎∗

3𝑘∗
𝑇3

𝜕𝑇

𝜕𝑦
                                                        (7) 

By substituting Eq. (7) into Eq. (3), we obtain,   

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑦
[(𝛼 +

16𝜎∗𝑇3

3𝑘∗𝜌𝑐𝑝
)

𝜕𝑇

𝜕𝑦
]                                    (8) 

 Next, we introduce the following dimensionless variables to simplify the mathematical 
analysis using similarity transformations,  
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𝜓(𝑥, 𝑦) = √
2𝜈𝑏

𝑚 + 1
𝑥

𝑚+1
2 𝑓(𝜂),       𝜂 = 𝑦√

𝑏(𝑚 + 1)

2𝜈
𝑥

𝑚−1
2 ,       𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑓 − 𝑇∞
   (9) 

where 𝜂 is the similarity variable and 𝜓 is the stream function given by  

𝑢 =
𝜕𝜓

𝜕𝑦
       and       𝑣 = −

𝜕𝜓

𝜕𝑥
                                          (10) 

From Eq. (9), we obtain  

𝑇 = 𝑇∞[1 + (𝜃𝑤 − 1)𝜃]       with       𝜃𝑤 =
𝑇𝑓

𝑇∞
                              (11) 

where 𝜃𝑤 > 1 is the temperature ratio parameter.  
 By substituting Eq. (9) – (11) into Eq. (1), (2), (4), (5) and (8), we obtain 

[1 + 𝑛𝑊𝑒2(𝑓′′)2][1 + 𝑊𝑒2(𝑓′′)2]
𝑛−3
2 𝑓′′′ + 𝑓𝑓′′ − (

2𝑚

𝑚 + 1
) (𝑓′)2 − 𝑀2𝑓′ = 0 (12) 

𝜃′′ + 𝑃𝑟𝑓𝜃′ +
4

3𝑁𝑅

𝑑

𝑑𝜂
[(1 + (𝜃𝑤 − 1)𝜃)3𝜃′] = 0                         (13) 

𝑓(0) = 𝑠,       𝑓′(0) = 1,       𝜃′(0) = −𝛾[1 − 𝜃(0)]       at       𝜂 = 0                         (14) 
 𝑓′(∞) → 0,       𝜃(∞) → 0                             as      𝜂 → 0                         (15) 

where the prime represents ordinary derivative with respect to 𝜂. 

 In the above equation, the local Weissenberg number, 𝑊𝑒2 =
𝑏3(𝑚+1)Γ2𝑥3𝑚−1

2ν
, the 

magnetic parameter, 𝑀2 =
2𝜎𝐵0

2

𝜌𝑏(𝑚+1)𝑥𝑚−1, the Prandtl number, 𝑃𝑟 =
𝜇𝑐𝑝

𝑘
, the non-linear 

radiation parameter, 𝑁𝑅 =
𝑘𝑘∗

4𝜎∗𝑇∞
3  and the local Biot number, 𝛾 =

ℎ𝑓

𝑘
√

2𝜈

𝑏(𝑚+1)
𝑥

1−𝑚

2 . The mass 

transfer parameter is 𝑠 = −𝑣𝑤 (√
2

𝜈𝑏(𝑚+1)
𝑥

1−𝑚

2 )  where 𝑠 > 0 for suction and 𝑠 < 0 for 

injection.  
 The local skin friction coefficient, 𝐶𝑓𝑥 and the local Nusselt number, 𝑁𝑢𝑥 are given as 

follows  

𝐶𝑓𝑥 =
𝜏𝑤

𝜌𝑈𝑤
2 (𝑥)

,       𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑓 − 𝑇∞)
                                 (16) 

where 𝜏𝑤 is the wall shear stress and 𝑞𝑤 is the wall heat transfer given by  

𝜏𝑤 = 𝜂0

𝜕𝑢

𝜕𝑦
[1 + Γ2 (

𝜕𝑢

𝜕𝑦
)
2

]

𝑛−1
2

|

𝑦=0

,       𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑤

+ (𝑞𝑟)𝑤             (17) 

Substituting Eq. (17) into Eq. (16), we obtain  

𝑅𝑒1/2𝐶𝑓𝑥 = √
𝑚 + 1

2
𝑓′′(0) [1 + 𝑊𝑒2(𝑓′′(0))

2
]

𝑛−1
2

                                               (18) 

𝑅𝑒−1/2𝑁𝑢𝑥 = −√
𝑚 + 1

2
𝜃′(0) [1 +

4

3𝑁𝑅

[1 + (𝜃𝑤 − 1)𝜃(0)]3]                              (19) 

where 𝑅𝑒 =
𝑏𝑥𝑚+1

𝜈
 is the local Reynolds number. 
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3. Results and Discussion  
 
The non-linear ordinary differential equations in Eq. (12) and Eq. (13) subject to the 
boundary conditions (14) and (15) are solved numerically by using shooting method. The 
accuracy of the results is then validated by comparing the obtained results with the 
published results of Khan et al. (2016b). The results are found to be in excellent 
agreement as shown in Table 1. In current work, the numerical computations are done 

for various values of different parameters such as the suction parameter 𝑠, the power law 
index 𝑛, the radiation parameter 𝑁𝑅, the temperature ratio parameter 𝜃𝑤, the magnetic 
parameter 𝑀, the Prandtl number 𝑃𝑟 and the Biot number 𝛾. As shown in Table 1, the 

magnitude of skin friction, |𝑅𝑒1/2𝐶𝑓𝑥| is larger in shear-thickening fluid compared to shear-

thinning fluid. Besides that, the magnitude of skin friction are noted to increase as suction, 

𝑠 and magnetic field, 𝑀 increase. This shows that the magnitude of the wall shear stress 
becomes bigger in the presence of suction and magnetic field. On the other hand, the 

local Nusselt number, 𝑅𝑒−1/2𝑁𝑢𝑥 increases as suction parameter increases and drops in 
the presence of magnetic field. This indicates that strong magnetic field cause the heat 
transfer rate to be low.   
 

Table 1. Values of the local skin friction 𝑅𝑒1/2𝐶𝑓𝑥 and local Nusselt number 𝑅𝑒−1/2𝑁𝑢𝑥 for 

various 𝑠, 𝑛 and 𝑀 when 𝑊𝑒 = 2.0, 𝑃𝑟 = 1.5, 𝑁𝑅 = 1.0, 𝜃𝑤 = 1.5, 𝛾 = 0.3 and 𝑚 = 1.5 are 
fixed.  
 

  Khan et al. (2016b) Present Work 

𝑠 𝑀 𝑅𝑒1/2𝐶𝑓𝑥 𝑅𝑒−1/2𝑁𝑢𝑥 𝑅𝑒1/2𝐶𝑓𝑥 𝑅𝑒−1/2𝑁𝑢𝑥 

𝑛 = 0.5 𝑛 = 1.5 𝑛 = 0.5 𝑛 = 1.5 𝑛 = 0.5 𝑛 = 1.5 𝑛 = 0.5 𝑛 = 1.5 

0 0.0 
0.5 
1.0 

-0.976815 
-1.057526 
-1.248588 

-1.345810 
-1.503946 
-1.918569 

0.585077 
0.565682 
0.513053 

0.613299 
0.604028 
0.579931 

-0.976815313 
-1.057525483 
-1.248576757 

-1.345803403 
-1.503939381 
-1.918552479 

0.5850848794 
0.5656770253 
0.5131265403 

0.6132870287 
0.6040259460 
0.5799214527 

1 0.0 
0.5 
1.0 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

-1.573984257 
-1.647219540 
-1.824302871 

-2.071448289 
-2.219090906 
-2.614341401 

0.7037868742 
0.7020684494 
0.6982639891 

0.7146529888 
0.7138851187 
0.7117744181 

2 0.0 
0.5 
1.0 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

-2.448630233 
-2.500584263 
-2.634510420 

-2.964784438 
-3.092346078 
-3.445822689 

0.7431971906 
0.7430922037 
0.7427380320 

0.7469205180 
0.7467568847 
0.7465746403 

3 0.0 
0.5 
1.0 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

-3.467001222 
-3.501136581 
-3.594470379 

-3.946967718 
-4.056735323 
-4.368177671 

0.7583392762 
0.7582327878 
0.7581870877 

0.7597571380 
0.7597423250 
0.7596830341 

4 0.0 
0.5 
1.0 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

-4.540149433 
-4.563428644 
-4.629166048 

-4.975366216 
-5.071227374 
-5.347576538 

0.7654269701 
0.7654203670 
0.7654137638 

0.7661278676 
0.7661148681 
0.7661083662 

 

 The effect of the suction parameter 𝑠 on the fluid velocity and temperature are shown 
in Fig. 2 and Fig. 3 respectively. 𝑀 > 0 indicates the case of hydromagnetic flow while 
𝑀 = 0 indicates the hydrodynamic flow. Based on Fig. 2, it can be seen that as the suction 
parameter, 𝑠 increases, the fluid velocity, 𝑓′(𝜂) decreases. In the presence of magnetic 

field where 𝑀 > 0, the velocity curves are nearer to the surface. This indicates that the 
fluid velocity is lower and the momentum boundary layer thickness is smaller in the 
presence of magnetic field. In Fig. 3, suction causes the fluid temperature, 𝜃(𝜂) to 
decrease. It can also be seen in Fig. 3 that the temperature curves become further from 
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Fig.  2. Effect of the suction parameter 𝒔 on the 

dimensionless velocity 𝒇′(𝜼). 
Fig.  3. Effect of the suction parameter 𝒔 on the 

dimensionless temperature 𝜽(𝜼). 

the surface when magnetic field is applied to the fluid. Thus, the temperature is higher 
and the thermal boundary layer thickness is bigger in the presence of magnetic field. 
These results can be explained by the presence of Lorentz force in the flow. According to 
Lok et al. (2011), Lorentz force is a drag-like force that is produced when magnetic field 
is applied to an electrically conducting fluid. Therefore, the increase in magnetic 
parameter will results to a stronger Lorentz force. This force provides resistance against 
the flow velocity which then induces the temperature field and cause the fluid temperature 
to increase.  

 Next, Fig. 4 shows the effect of the radiation parameter, 𝑁𝑅 on the fluid temperature, 
𝜃(𝜂) in the presence and absence of suction. The temperature and thermal boundary 
layer thickness decreases as the radiation parameter increases. As we discussed before, 
the presence of suction reduces the fluid temperature.  In Fig. 5, the large temperature 
ratio parameter, where 𝜃𝑤 > 1 indicates that the wall temperature, 𝑇𝑓 is higher than the 

ambient fluid temperature, 𝑇∞. As a result, the temperature of the fluid rises. The thermal 
boundary layer thickness becomes larger as the temperature ratio parameter increases. 
However, it can be noticed that the thermal boundary layer thickness reduces significantly 
when suction is applied.  

 Then, the influence of local Biot number, 𝛾 on the dimensionless temperature is 
illustrated in Fig. 6. If the local Biot number, 𝛾 is larger than 0.1, it implies that heat 
convection occur between the stretching sheet and the fluid. This will eventually increase 
the temperature of the fluid. The thermal boundary layer thickness becomes thicker as 
the local Biot number increases. When suction is applied, the thermal boundary layer 
thickness becomes thinner. Last but not least, Fig. 7 shows the effect of Prandtl number, 

𝑃𝑟 on the temperature in the presence and absence of suction. The small value of Prandtl 
number indicates that the fluid has high thermal conductivity. Therefore, the smaller the 
value of Prandtl number, the higher the fluid temperature. This can be observed from Fig. 
7 where the thermal boundary layer thickness becomes thicker with small Prandtl number. 
As expected, the thermal boundary layer thickness becomes thinner when suction is 
applied.  
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Fig.  4. Effect of the radiation parameter 𝑵𝑹 on 

the dimensionless temperature 𝜽(𝜼). 
Fig.  5. Effect of the temperature ratio parameter 

𝜽𝒘 on the dimensionless temperature 𝜽(𝜼). 

Fig.  6. Effect of the Biot number 𝜸 on the 

dimensionless temperature 𝜽(𝜼). 
Fig.  7. Effect of the Prandtl number 𝑷𝒓 on the 

dimensionless temperature 𝜽(𝜼). 

 

  
 
 
 
 

 
 
  
 
  
4. Conclusion  
 
The MHD flow of Carreau fluid with suction over a non-linear stretching sheet with the 
presence of non-linear thermal radiation is investigated. Convective boundary condition 
is applied for heat transfer analysis. Rosseland approximation is used to simplify the 
radiative heat flux expression. The governing boundary layer equations along with the 
boundary conditions are transformed using the similarity variables before being solved 
numerically by using shooting method. 
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 It is found that the presence of magnetic field causes the fluid velocity to decrease 
and the temperature to increase while the presence of suction reduces the fluid velocity 
and temperature. As radiation parameter increases, the temperature of the fluid 
decreases. The large value of local Biot number corresponds to high heat transfer rate 
between the sheet and the fluid causes the fluid temperature to increase.   
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CHAPTER 10  

HEAT TRANSFER CHARACTERISTICS OF MHD STAGNATION-POINT FLOW OF 

CARREAU FLUID OVER A SHRINKING SHEET  

 

Abstract 
 
In this paper, the problem of the magnetohydrodynamic (MHD) stagnation-point flow and 
heat transfer Carreau fluid toward a permeable shrinking sheet is studied.  The governing 
boundary layer equations are transformed into a set of ordinary differential equation using 
the local similarity approach and then is solved numerically via the shooting method.  
Numerical results for different values of governing parameters on the heat transfer 
characteristics are presented and discussed.  In this study, the existence of dual solutions 
of the problem is observed.  It is also found that for various values of Prandtl number, the 
boundary layer separation occurs at the same turning point.  
 
Keywords: Boundary layer, Carreau fluid, Dual solutions, Magnetohydrodynamic 

 
Introduction 
 
A stagnation-point flow is a point in a flow field where the local velocity of the fluid is zero. 
A study on magnetohydrodynamic (MHD) stagnation-point flow has many important 
applications in engineering.  For example in metallurgical, drawing, annealing, and tinning 
of copper wires processes, involve the cooling of continuous strips by drawing them 
through a quiescent fluid (Ali et al., 2011).  Hiemenz (1911) studied a two-dimensional 
flow of a fluid near a stagnation-point in boundary layer flow.  Other researchers extended 
the stagnation-point flow problem in various ways.  For instance, Nazar et al. (2004) 
studied an unsteady two-dimensional stagnation-point flow of an incompressible viscous 
fluid over a flat deformable sheet and Ali et al. (2011, 2014) investigated the problems of 
mixed convection stagnation-point flow on a vertical stretching sheet with induced 
magnetic field and external magnetic field, respectively. 
 
In non-Newtonian fluid, Sadeghy et al. (2006) investigated the problem of two-
dimensional stagnation-point flow of viscoelastic fluids theoretically.  The steady MHD 
mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation-
point flow with magnetic field has been investigated by Kumari and Nath (2009).  Both 
studies assumed that the fluid obeys the upper-convected Maxwell model.  In micropolar 
fluid, Ishak et al. (2008) studied the problem of MHD flow towards a stagnation-point on 
a vertical surface.   
 
In this present paper, we extend the work done by Akhbar et al. (2014) by obtaining the 
heat transfer characteristics where Akhbar et al. (2014) studied the dual solutions of MHD 
stagnation-point flow of Carreau fluid toward a permeable shrinking sheet problem.  
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Carreau fluid is a type of generalized Newtonian fluid. At low shear rate Carreau fluids 

behaves as a Newtonian fluid when the power law index, 1n  and at high shear rate as 

power law fluid.  For 1n , the Carreau fluid gives pseudoplastic that is non-Newtonian, 

or shear-thinning fluids have a lower apparent viscosity at higher shear rates and for 1n  
the Carreau fluid behaves as Dilatant which is non-Newtonian, or shear-thickening fluids 
increase in apparent viscosity at higher shear rates (Akhbar & Nadeem, 2014).   
 
 

Problem formulation 
 
Consider a two-dimensional stagnation-point flow of an incompressible Carreau fluid over 
a wall coinciding with plane 0y , the flow is being confined to 0y .  The flow is 

generated due to the linear stretching.  Extra stress tensor for Carreau fluid is  
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in which ij  is the extra stress tensor, 0  is the zero shear rate viscosity,   is the time 

constant, n  is the power law index and   is defined as 
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where   is the second invariant strain tensor. 
 
We assumed that the magnetic Reynolds number is small, so that the induced magnetic 
field is negligible. Under the assumption along with the Boussinesq and boundary layer 
approximations, the basic equations of the problem can be written as follows: 
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where u  and v  are the velocity components along the x  and y axes, respectively, T 

is the fluid temperature,   is kinematic viscosity,   is the electrical conductivity and   is 

the density.  It is noticed that for power law index 1n  of the problem reduced to the case 

of Newtonian fluid while for 1n  phenomena remains for non-Newtonian fluid. In which 

0b  is constant, we assume that   axxuw   and   bxxue   are the velocities near and 

away from the wall respectively. 
 

The boundary conditions for Eqs. (3)-(5) are  

  ,xuu w
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We introduce the following similarity transformations: 
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where   is the similarity variable and   is the stream function which is defined as 

yu  /  and xv  / , hence Eq. (3) is satisfied.   

 
Substituting Eq. (7) into Eqs. (4) and (5), we obtain the following similarity or ordinary 
nonlinear differential equations: 
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and the boundary conditions (6) reduced to 

            ,10,0,0  fsf  

     ,0,1  f          (10) 

where s is the suction/injection parameter, 
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is the magnetic or Hartmann (1937) number, 




Pr  is the Prandtl number and 

b

a


 
is the stretching or shrinking parameter.  It is worth mentioning that 0s  is 

impermeable case, s > 0 corresponds to suction case and s < 0 corresponds to injection 

case 0  is the stretching case and 0  is the shrinking case. 

 

In this study, the physical quantities of interest are the skin friction coefficient fxC  and also 

the local Nusselt number xNu , which are defined as 
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where w  is the surface shear stress in the direction of y, while wq  is the surface heat flux, 

which are given by: 
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with   and k being the dynamic viscosity and thermal conductivity of the fluid, respectively. 

Using Eq. (7), we obtain: 
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where 


xue
x Re   is the Reynolds number. 

 

Results and Discussion 

Equations (8)-(10) have been solved numerically using the shooting method built in Maple 
software, described by Meade et al. (1996). The results of the skin friction coefficient for 
stretching and shrinking sheets are compared with previously published results for 
validation purposes, as shown in Tables 1 and 2, respectively. The comparisons found to 
be in excellent agreement. Table 2 shows the numerical results for the first (upper branch) 
and second (lower branch) solutions of the problem. The dual solutions found to exist for 

a certain range of . The skin friction coefficient decreases with  for the first solution, 
however, it shows opposite effect for the second solution.  

Table 1: Comparison of the values of the skin friction coefficient (with 0M ) for stretching 

sheet with different values of λ when 0,0,1  Wesn  and Pr = 0.72 

 

  Present 
results 

Akhbar et 
al. (2014) 

Mahapatra & 
Nandy (2013) 

Wang 
(2008) 

Lok et al. 
(2006) 

0.0 1.2326 1.2326 1.2326 1.2326 - 

0.1 1.1466 1.1466 1.1466 1.1466 - 

0.2 1.0511 1.0511 1.0511 1.0511 - 

0.5 0.7133 0.7133 0.7133 0.7133 0.7133 

1.0 - 0 0 0 - 

2.0 1.8873 1.8873 1.8873 1.8873 1.8873 

5.0 10.2647 10.2647 10.2647 10.2647 10.2647 

 

Table 2: Comparison of the values of coefficient of the skin friction (with 0M ) for 

shrinking sheet with different values of λ when 0,0,1  Wesn  and Pr = 0.72 

  Present results Akhbar et al. (2014) Mahapatra & Nandy 
(2013) 

 First 
solution 

Second 
solution 

First 
solution 

Second 
solution 

First 
solution 

Second 
solution 

-0.25 1.4022 - 1.4022 - 1.4022 - 

-0.50 1.4957 - 1.4956 - 1.14957 - 

-0.75 1.4893 - 1.4893 - 1.4893 - 

-1.15 1.0822 0.1167 1.0822 0.1167 1.0822 0.1167 

-1.20 0.9325 0.2336 0.9325 0.2336 0.9324 0.2336 
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(a)                                                                      (b) 

Figure 1: Effects of power law index n  on temperature profile when (a) 2  and (b) 

2   

Figures 1(a) and (b) illustrate the effects of power law index, n on the temperature profile 

when 2  (shrinking case) and 2  (stretching case), respectively.  Figures 1(a) and 

1(b) show the dual profiles for both shrinking and stretching cases, thus admit the 
existence of the dual nature of solutions.  From Fig. 1(a), when the sheet is shrunk, the 
temperature profiles increase with n for both solutions, however Fig. 1(b) shows opposite 
effect occurs for stretching case.   
 
Figures 2 displays the temperature profiles for various values of s when other parameters 
are fixed.  The temperature profiles for the first and second solutions decreases with 
suction parameter, s.  Physically, suction increases the surface shear stress, hence it 
increases the temperature gradient. All the temperature profiles satisfy the boundary 
conditions (10). 
 

 
Figure 2: Effects of suction parameter s on temperature profile when 3  
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Figure 3: Variation of the local Nusselt number with n  and   

 
Figure 3 shows the effects of n  and   on the local Nusselt number.  Both the first solution 

and second solution show decreasing behavior for increasing values of power law index 

n.  It is seen from Fig. 4 that there exist dual solutions for 0 c , where c  is the 

critical value (turning point).  No solution is found for c  , therefore at c  , 

boundary layer starts to separate from the surface.  It is found that c  is reduces with n, 

where for n  1.5, 2 and 2.5 the critical values c  are 5.8348, 5.3459 and 5.0711, 

respectively. Thus, larger values of power law index enhance the boundary layer 
separation because the shear-thickening fluids increase in apparent viscosity at higher 
shear rates. 
 

Figure 4 illustrates the effects of s and   on the local Nusselt number, and dual solutions 

are also exist.  The critical values for different values of suction parameter, s  5, 6 and 

7 are 5.3459, 6.1763 and 6.9895, respectively.  Thus, this shows that the suction 
parameter delays the boundary layer separation.  As the values of the suction parameter, 
s increase, a further increases in the local Nusselt number for both first and second 
solutions due to decreases in the temperature gradient at the plate surface.  
 
 

 

Figure 4: Variation of the local Nusselt number with s and   
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Figure 5: Variation of the local Nusselt number with λ and Pr  
 

The effects of the Prandtl number, Pr and   on the local Nusselt number are shown in 

Figure 5, where the local Nusselt number increases when the value of Pr and   

increases.  Figure 5 also displays the dual solutions, with the critical value for all Pr  0.7, 

2 and 4 occurs at the same value, namely, c  5.3459..   
 

Conclusion 

A numerical study is performed for the problem of stagnation-point flow and heat transfer 
of Carreau fluid toward a permeable sheet with the presence of magnetic field.  For heat 
transfer characteristics, it is found that dual solutions exist.  It is also observed that the 
power law index enhances the boundary layer separation, however the suction parameter 
delays the boundary layer separation.  The boundary layer separation occurs at the same 
turning point for various values of Prandtl number. 
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