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PREFACE 

 

This book is the second volume of research papers presented at the Fundamental 
Science Congress 2017 at Universiti Putra Malaysia on November 21-22, 2017.The 
congress served as a platform for researchers from different parts of Malaysia to share 
their knowledge and initiate collaboration among themselves. This book presents the 
latest findings in various fields of Statistics.  
 
Chapter 2 propose a statistical method to identify outliers in the response variable of a 
simple circular regression model with high ratio of contamination. The proposed method 
depends on the circular distance between circular residuals and its trimmed mean as a 
measure of identification. The results of the simulation study and real example data show 
that the proposed method is successful in detecting outliers in the response variable.   
 
Chapter 3 present the comparision between frequentist and Bayesian logistic regression 

(BLR) for identifying the malaria risk factors in Abuja, Nigeria. The frequentist logistic 

regression identified gender, family sizes, indoor residual spray and windows and door 

nets as predictors of malaria in Abuja. Similar findings were found for BLR. However, 

more concise and better results were found using Bayesian Monte Carlo study via 

WinBUGS algorithm. Nonetheless, the present study showed that the BLR method was 

comparable to frequentist logistic model especially when non-informative prior with large 

was used.  

  
Chapter 4 consists of a paper on Optical tomography.  Optical tomography is one of the 

tomography methods which are non-invasive and non-intrusive system, consisting of 

emitter with detectors. This research are conducted in order to analyze and proved the 

capability of laser with Charge Coupled Device in an optical tomography system for 

measuring object diameter that exist in crystal clear water. Experiments in detecting and 

capturing static solid rod in crystal clear water are conducted using this hardware and 

software development.  

 

In Chapter 5, presents Robus Heteroscedasticity consistent covariance matrix (RHCCM) 

based on modified generalized studentized residuals (MGt) based on DRGP(ISE). The 

RHCCM estimator is an alternative method in the case of unknown errors structure to 

remedy both the effect of leverage points and heteroscedasticity.  

 

Chapter 6 discusses a violation of constancy of variance of error terms causes the 
problem of heteroscedasticity. The OLS estimate is no longer efficient in the presence of 
heteroscedasticity in a data set, because the OLS estimates will be biased and 
inconsistent. As an alternative, a weighted residuals (wild bootstrap) may be used to 
remedy this problem. However, the weakness of wild bootstrap is that, in the presence of 
outliers the estimates of the standard errors become large. Therefore, a robust wild 
bootstrap is formulated based on MM-GM6 estimator so that the problems of both 
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heteroscedasticty and outliers can be rectified. The results show that the proposed 
method performs better than the existing ones such as OLS, Wu, and Liu. 
 

Chapter 7 introduces a new approach normalization techniques to enhance the K-Means 

algorithm. This is to remedy the problem of using decimal scaling approach, which has 

overflow weakness. Hence, the suggested approach is called new approach to decimal 

scaling (NADS). Furthermore, based on real life datasets, the performance of the 

suggested method is compared with the existing methods, which evidently indicates that 

the suggested method outperformed the existing methods with higher average maximum 

external validity measures, and lower computing time (in minutes). Consequently, the 

proposed method may be used as data preprocessing methods in distance-based 

clustering analysis. 

 

Chapter 8 comprises a problem of collinearity among regressors and weighted regressors 

in the observed Fisher information matrix of maximum likelihood. Under a certain 

condition, collinearity can reduce variance estimates in the presence of high leverage 

points. 

 

Chapter 9 presents a study focused on nine accessions of closely related 5 Passiflora 

species; i.e, Passiflora quadrangularis, Passiflora maliformis, Passiflora incarnata, 2 

varieties of Passiflora foetida and 4 varieties of Passiflora edulis as an example aimed to 

study the purposes of multivariate analyses for species separation. Combination of 

morphological traits using appropriate set of multivariate analyses and molecular 

approaches are useful for distinguishing the closely related Passiflora species. 
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CHAPTER 1 

INTRODUCTION 

 

Statistics is a branch of mathematics. Statistics dealing with data collection, 
organization, analysis, interpretation and presentation. Statistics deals with all aspects of 
data including the planning of data collection in terms of the design 
of surveys and experiments. More over, statistics is concerned on the analysis of data 
and decision making based upon data. This multidisciplinary book on latest discoveries 
in various fields of Statistics. 

 
Bayesian statistics is a subfield of statistics based on the Bayesian interpretation 

of probability where probability expresses a degree of belief in an event, which can 
change as new information is gathered, rather than a fixed value based upon frequency 
or propensity. The degree of belief may be based on prior knowledge or information about 
the event, such as the results of previous experiments, or on personal beliefs about the 
event. This differs from a number of other interpretations of probability, such as 
the frequentist interpretation that views probability as the limit of the relative frequency of 
an event after a large number of trials. Bayes' theorem are used to compute and update 
probabilities after obtaining new data. Bayes' theorem describes the conditional 
probability of an event based on data as well as prior information or beliefs about the 
event or conditions related to the event.  

 
Multivariate statistics is also a subfield of statistics. Multivariate 

statistics encompassing the simultaneous observation and analysis of more than one 
outcome variable. The application of multivariate statistics named as multivariate 
analysis. Multivariate statistics is used to understand the different aims and background 
of each of the different forms of multivariate analysis, and how they relate to each other. 
The practical application of multivariate statistics to a particular problem may involve 
several types of univariate and multivariate analyses in order to understand the 
relationships between variables and their relevance to the problem being studied. 

 
Another subfield of Statistics is robust statistics. Robust statistics is used to provide 

methods that emulate popular statistical methods, but which are not unduly affected by 
outliers or other small departures from model assumptions. In statistics, classical 
estimation methods rely heavily on assumptions which are often not met in practice. In 
particular, it is often assumed that the data errors are normally distributed, at least 
approximately, or that the central limit theorem can be relied on to produce normally 
distributed estimates. However, classical estimators often have very poor performance 
when there are outliers in the data. 

 
Regression analysis is a subfield of statistical processes. It is used to estimate the 

relationships among variables. It have many techniques for modeling and analyzing 
several variables, when the focus is on the relationship between a dependent 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Statistical_survey
https://en.wikipedia.org/wiki/Experimental_design
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Bayesian_probability
https://en.wikipedia.org/wiki/Bayesian_probability
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)
https://en.wikipedia.org/wiki/Probability_interpretations
https://en.wikipedia.org/wiki/Frequentist_probability
https://en.wikipedia.org/wiki/Limit_of_a_sequence
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Multivariate_analysis
https://en.wikipedia.org/wiki/Multivariate_analysis
https://en.wikipedia.org/wiki/Statistical_assumption
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Dependent_variable
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variable and one or more independent variables. In other word, regression analysis helps 
us to understand how the typical value of the dependent variable changes when any one 
of the independent variables is varied, while the other independent variables are held 
fixed. Regression analysis is widely used for prediction and forecasting. 

 
This book is very useful not only for statisticians but also to statistics practitioners 

as a quick reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/Forecasting
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CHAPTER 2  

Detection of Outliers in a Simple Circular Regression Model 

  
Abstract  
 
The existence of outliers in any type of data influences the efficiency of the estimators 
and the study of the results. In the literature, many methods have been proposed to 
identify outliers in the simple linear regression model. However, few methods have been 
proposed to identify outliers in the simple circular regression model. Moreover, these 
proposed methods did not succeed to identify outliers especially with high ratio of 
contamination. This motivated us to propose a statistical method to identify outliers in the 
response variable of a simple circular regression model with high ratio of contamination. 
The proposed method depends on the circular distance between circular residuals and 
its trimmed mean as a measure of identification. The results of simulation study and real 
example data show that the proposed method is successful detect outliers in the response 
variable.   
 
Keywords: Outlier, Circular Regression Model, COVRATIO statistic, von Mises 
 
Introduction 
 
The simple circular regression model is used to represent the relationship between the 
response  and the explanatory variables when both of them are circular. This model can 
be used in many scientific fields such as Meteorology, Biology, Physics and Medicine. 
However, the existence of outliers can cause a huge effect of the statistical analysis and 
the final outcomes. In real data, samples might include noise, or outliers. Outlier is an 
observation which appears inconsistent (extreme) with the other observations in the 
statistical data and effect on the results (Barnett and Lewis, 1994). In the literature, few 
methods are developed to identify outliers in the simple circular regression model. Hassan 
et al. (2010) suggested the functional relationship model for circular variables and 
estimated the model parameters by using the maximum likelihood method. Abuzaid et al. 
(2011) suggested using the COVRATIO statistic to detect outliers in the response variable 
of a simple circular regression model. Rambli (2011) adapted COVRATIO and the mean 
circular error statistic MCEs that were proposed by Abuzaid (2010) to identify outliers in 
circular regression model. Abuzaid et al. (2013) proposed the mean circular error statistic 
DMCEc to identify outliers in the response variable of a simple circular regression model, 
by using a row deletion approach. Abuzaid (2013) compared the performance of 
COVRATIO statistic for a simple circular regression model (SC) and a complex linear 
regression model (CL). He found that the COVRATIO statistic performs better for the SC 
model than for the CL model. Hussin et al. (2013) proposed a complex linear regression 
model to fit the circular data, using the complex residuals to detect any possible outliers. 
However, the problem of outliers detection in a simple circular regression model has not 
received enough consideration. In this paper, a new approach is proposed to identify 
outliers in the response variable of a simple circular regression model.  
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Methodology 
 
The simple circular regression model is given by Hussin et al. (2004) as follows: 
       yi = α + βxi + εi (mod 2π)                                                                                         
where α and β are the parameters and ε is the circular random error, which follows the 
von Mises distribution with a circular mean µ and concentration parameter k. The 
probability density function of von Mises distribution with mean direction µ and 
concentration parameter k is given as follows (Mardia and Jupp, 2000): 
 

g(ϑ, μ, k) =
1

2πI0(k)
ekcos(ϑ−μ) 

                                                                      
where Io denotes the modified Bessel function of the first kind and order zero.  
The maximum likelihood estimates of the parameters of the simple circular regression 
model are given as follows (Hussin et al. 2004)  : 
 
                    tan-1(s/c)                            if s > 0 , c > 0 
      α̂  =        tan-1(s/c) + π                     if c < 0                                                             
                    tan-1 (s/c) + 2π                  if s < 0 , c > 0 
 
where :  
  

S = ∑ sin (yi − β̂xi)   ,   C = ∑ cos (yi − β̂xi) 
 
 

β̂1 ≈ β̂o +
∑ xisin (yi − α̂ − β̂oxi)

∑ xi
2cos ( yi − α̂ − β̂oxi)

 

  

     

ŷi = α̂ + β̂xi(mod2π) 
                                                                   
                                                                                         
COVRATIO Statistic  
   
Abuzaid et al. (2011) proposed COVRATIO statistic to detect outliers in the response 
variable of a simple circular regression model. The COVRATIO statistic is given by:  

  

COVRATIO(−i) =
|COV(−i)|

|COV|
                                                                                   

where: |COV| is the determinant covariance matrix of coefficients for the full data set,       

|COV| =
1

k̂A(k̂)
   and |COV(−i)| is the determinant covariance matrix of coefficients for the 

reduced data set formed by excluding the i-th row, |COV(−i)| =
1

k̂(−i)A(k̂(−i))
. The cut-off 
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point represents the maximum value of the statistic  
|COVRATIO(−i) − 1| Abuzaid et al. (2011). 

        cut COVRATIO = max|COVRATIO(−i) − 1| 

The i-th observation is identified as an outlier if |COVRATIO(−i) − 1| exceeds the cut-off 

point. 
 
Mean Circular Error Statistic  
 
Abuzaid (2010) and Abuzaid et al. (2013) suggested two statistics, the DMCEs and 
DMCEc statistics, to identify outliers in the response variable y in a simple circular 
regression model. 
 
DMCEs Statistic  
 

MCEs =
1

n
∑ sin (

di

2
)   

where (di = π − |π − |yi − ŷi|| ),  MCEs ∈ [0,1]   
The statistic to detect outliers is given as follows: 
 
            DMCEs(i) = | MCEs – MCEs(-i)|                                                                              
where MCEs(-i) is MCEs with the i-th observation removed.   
The cut-off point represents the maximum absolute difference between the value of the 
statistic for the full data and the reduced data set (formed by excluding the i-th 
observation). 
 

            cut DMCEs = max|MCEs − MCEs(−i)|                                                              
The i-th observation is identified as an influential observation if DMCEs(i) is greater 

than the cut-off point. 
 

 
DMCEc Statistic  
 

       MCEc = 1 −
1

n
∑ cos (yi − ŷi)  

where,   MCEc ∈ [0,2].  
The statistic to identify outlier is given as follows: 
 
       DMCEc(i) = | MCEc – MCEc(-i)|                                                                            
where MCEc(-i)  is MCEc with the i-th observation removed. The cut-off point is the 
maximum absolute difference between the value of the statistics for the full data set and 
the reduced data sets. 
 

                    cut DMCEc = max|MCEc − MCEc(−i)|                                                           
If DMCEc(i) is greater than the cut-off point, the i-th observation is detected as an outlier. 
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The Proposed Method 
  
A new method is proposed to identify outliers in the response variable of a simple circular 
regression model based on the circular distance theory between two circular 
observations. We call this procedure the robust circular distance RCDy, because it 
depends on the robust circular distance between any circular error and its mean direction. 
The proposed method is computed according to the following steps. 

 
Step 1. Calculate the absolute value of the estimated circular error 𝑒̂𝑖. We propose to 
calculate this according to the following: 

 

i- If (0 ≤ ŷi ≤ π): 
 

                      |yi − ŷi|                                if |yi − ŷi| ≤ π 

      |êi|  =                                                                                   

                      2𝜋 − 𝑦𝑖 + 𝑦̂𝑖                         if |yi − ŷi| > π 
                                                       

ii- If (π < ŷi ≤ 2π): 
  

                      |yi − ŷi|                                  if |yi − ŷi| ≤ π 

      |êi| =                                                                                        

                      2π − ŷi + yi                            if |yi − ŷi| > π 
 

where [0 ≤ |êi| ≤ π]   
 

Step 2. Compute the trimmed mean. 
Step 3. Compute the circular distance [dist(i)]y between  |𝑒̂𝑖|  and its trimmed mean as 
follows: 
 

- If (0 ≤ μt ≤ π): 
 

                                 ||êi| − μt|                                 if ||êi| − μt| ≤ π 

      [dist(i)]y =                                                                                       

                                 2π − |êi| + μt                           if ||êi| − μt| > π 

 

- If (π < μt ≤ 2π): 
 

                                  ||êi| − μt|                                  if ||êi| − μt| ≤ π 

       [dist(i)]y =                                                                               

                                  2π − μt + |êi|                           if ||êi| − μt| > π 

[0 ≤ [dist(i)]y ≤ π]   
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Finally, if y(i) is an outlier then [dist(i)]y is expected to be relatively large. Therefore, the cut-
off point should be the following: 

 

            𝑅𝐶𝐷𝑦 = max[dist]y  

 
Consequently, y(i) is identified as an outlier if [dist(i)]y exceeds the cut-off point. 
 
Results 
 
Simulation Study 
 
The performance of the RCDy statistic is investigated by comparing with the COVRATIO, 

DMCEs and DMCEc methods using Monte Carlo simulations. We compare the results by 

using four sample sizes, n =10, 50, 100, and 150, and six concentration parameters, k = 

3, 5, 8, 10, 20, and 30. Following Abuzaid et al. (2013), the response variable y is 

contaminated according to the following formulas: 

 

       yc[i] =  y[i] + λπ mod(2π)                                                                  

where: 

yc[i] is the contaminated circular observation. 

λ is the degree of contamination, such that (0 ≤ λ ≤ 1). 

  

For all combinations of sample sizes and concentration parameters, we generate 20% 

and 30% contaminated data with λ = 0.8. We replicate these processes 5000 times for 

each combination of sample size and concentration parameter. The values of cut-off 

points of RCDy statistic with 5% upper percentile are given in Table 1.  

To evaluate the performance of all the statistics, the proportion of outliers detected is 

computed. The results are shown in Figures 1–2. 

 

Table 1: Cut-off points of the RCDy statistic with 5% upper percentile 
n       k 2 3 5 6 8 10 15 20 30 

10 2.26 1.72 1.45 1.39 1.12 0.703 0.494 0.409 0.325 

20 2.33 2.02 1.18 1.01 0.878 0.814 0.746 0.561 0.430 

30 2.36 1.52 1.23 1.10 0.892 0.772 0.621 0.567 0.517 

40 2.39 2.20 1.27 1.11 0.910 0.822 0.637 0.534 0.457 

50 2.40 1.75 1.36 1.17 0.959 0.819 0.668 0.569 0.448 

60 2.42 2.30 1.39 1.18 0.982 0.831 0.672 0.577 0.457 

70 2.42 2.35 1.45 1.22 0.990 0.853 0.677 0.582 0.465 

80 2.43 2.37 1.49 1.25 1.00 0.888 0.688 0.587 0.474 

90 2.43 2.40 1.50 1.27 1.02 0.896 0.700 0.596 0.480 

100 2.44 2.43 1.53 1.29 1.03 0.905 0.718 0.603 0.488 

110 2.45 2.45 1.57 1.30 1.05 0.911 0.719 0.604 0.494 

120 2.45 2.45 1.58 1.31 1.05 0.920 0.725 0.610 0.496 

130 2.45 2.46 1.59 1.32 1.06 0.938 0.734 0.616 0.498 

140 2.45 2.47 1.60 1.33 1.07 0.944 0.735 0.625 0.500 

150 2.45 2.49 1.61 1.35 1.08 0.948 0.737 0.635 0.504 
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Figure 1: Proportion of outliers detected with 20% contamination 
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Figure 2: Proportion of outliers detected with 30% contamination 

 

We can notice that COVRATIO statistic not true for different sample sizes with 20% and 
30% of contaminations. The MCEs and MCEc gave relatively low proportion of detection.  
In contrast, the RCDy statistic gives the greatest proportion of outliers detected than the 
other methods. The proportion is an increasing function of the concentration parameter, 
and increases to 100% for values of the concentration parameter greater than 10. 
 
Practical Example  

We study the data set that were collected along the Holderness coastline (the 

Humberside coast of the North Sea, United Kingdom) Hussin, 1997. There were 78 

measurements recorded by HF radar system (OSCR) and anchored wave buoy. The  

deployment began in October 1994. The observations 60, 70 and 71 are identified as 

outliers (Hussin, 1997). The RCDy statistic is calculated and the results are plotted in 

Figure 3. The [RCD60]y, [RCD70]y and  [RCD71]y exceed the cut-off point, so the 

observations number 60, 70 and 71 are classified as outliers. These detections 

correspond with those given by (Hussin, 1997). The RCDy statistic is very successful to 

identify outliers 
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. 

Figure 3: RCDy statistic of the wind direction data (n=78) 

 
Conclusion  
In this article, a robust method is proposed to identify outliers in the response variable of 
a simple circular regression model. The circular distance between circular residuals and 
its trimmed mean is proposed as a measure to detect outliers. The results show that the 
proposed method is successful identifying outliers.  
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CHAPTER 3  

Bayesian and Frequentist Logistic Regression Models on Malaria Risk Factors: A 
Comparative Study 

Abstract 

Despite numerous interventions against malaria cases, the number of malaria cases is 
still on the increase, particularly in the tropics. The present study aimed to compare 
frequentist and Bayesian logistic regression (BLR) for identifying the malaria risk factors 
in Abuja, Nigeria. The study design was a cross-sectional study on 384 participants 
selected randomly from the four strata (cardinal points) of Gwagwalada Area Council 
Abuja. The data were collected from the month of March to September 2016 using a 
validated structured questionnaire. Results from multivariable logistic regression (optimal 
number of parameters chosen via MASS and BMA in R packages) and BLR analyses 
were compared. The frequentist logistic regression identified gender, family sizes, indoor 
residual spray and windows and door nets as predictors of malaria in Abuja. Similar 
findings were found for BLR. However, more concise and better results were found using 
Bayesian Monte Carlo study via WinBUGS algorithm. Nonetheless, the present study 
showed that the BLR method was comparable to frequentist logistic model especially 
when non-informative prior with large was used. The higher the precision assumed in the 
prior probability, the better the results especially with larger sample sizes.  

Keywords: Bayesian, Frequentist, Prior, Likelihood, Malaria, Nigeria. 

 

1.0 Introduction 
Malaria is caused by the bite of the infected female Anopheles mosquito which is active 
from dusk till dawn as it seeks blood for its eggs. Plasmodium parasites causes malaria 
in mammals, reptiles and even birds and the main source of transmissions are basically 
through mosquito of the genus Anopheles (Abdullahi et al., 2015). Other modes of 
transmission include organ transplant, congenital transmission through birth, blood 
transfusion as well as using unsterilized objects like syringe, needles, blades etc. Malaria 
symptoms are fever, high temperature, pain, and weakness of the body. It is curable but 
can relapse if not properly treated and possible recurrence as a result of dormant 
parasites in the liver cells (NIH, 2007). The most vulnerable individuals are those with 
lower level of immunity, for example children aged five or less, pregnant women and 
people with other forms of diseases (Woyessa et al., 2013). 
 
Malaria is a global phenomenon that has affected tropical and sub-tropical countries of 
the world where the breeding of host vectors is favoured by the prevailing environmental 
conditions, human sanitation, irrigation and agricultural practices (Babajide et al., 2015). 
Despite many control interventions in place malaria is still widespread. Some of the 
control interventions in sub-Sahara Africa (SSA) are vector control mechanism through 
insecticide treated nets (ITNs), windows and door nets (WDNs) and indoor residual spray 
(IRS) which have been found effective through proper ownership and usage; health 
promotions through health education interventions; prompt and adequate case 
management through artemisinin combination therapy for uncomplicated malaria as 
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recommended by World Health Organization and intermittent preventive therapy for 
women in pregnancy; cross border surveillance among others (Moonasar et al., 2012). 
 
Many models have been proposed in literature for identifying basic factors of malaria 
outbreaks especially from frequentist point of views, but such method suffers flexibility 
and accuracy as parameters of interest are assumed fixed and unknown quantities 
(Stauffer, 2008). Such quantities can only be estimated with maximum likelihood 
estimation (MLE) to maximize the probability of achieving the desired results within an 
estimated interval (confidence interval (CI)) with a fixed probability. However, parameters 
need not be fixed and can be viewed as a random variable incorporating probability inform 
of belief about such parameters which are specified based on available information before 
observations were made. Such beliefs when updated and improved upon gives better 
understanding of the process.  

The process of updating beliefs with the likelihood of the parameter given the data set is 
the idea behind Bayesian theory. The Bayesian statistical inference (BSI) utilizes basically 
the prior, posterior distributions and the likelihood functions from the data and models to 
estimate parameters. This can be achieved through Monte Carlo simulation from the 
posterior distribution via WinBUGS software. The conventional frequentist methods suffer 
some setbacks to pave way for general adoption and application of Bayesian analysis 
with advent of modern computer that makes simulations and data generation 
mechanisms much easier. Visualization of repeated sampling is difficult in frequentist 
statistical inference and sampled observations may not always be random, non-intuitive 
and confusing way of estimating parameter of interest without assignment of probability 
to parameters (Stauffer, 2008). In essence, the frequentist method assumed fixed values 
for the parameter within an estimated interval while prior information is ignored. BSI 
overcomes some of the short comings assuming parameters to be random, incorporation 
of prior knowledge (as known probability distribution) and likelihood based on the 
observed dataset.  

Studies have been done to compare estimations from both the Bayesian and logistic 
regression models. For example, Tsai (2004) applied binary logistic to Taipei mayoral 
election with Bayesian inference incorporating probability inform of vague prior for the 
election parameters for desired interest to be achieved while similar model was used to 
explore combinations of risk factors of type 2 diabetes mellitus among selected men and 
women in Malaysia (Chiaka et al., 2015).  

Several authors have used Bayesian statistics in identifying malaria risk factors across 

SSA (Diboulo et al., 2015; Pullan et al., 2010). However, there are limited studies on 

malaria risk factors in Nigeria that employed the Bayesian logistic regression (BLR) 

method using different non-informative priors. Thus, this study explored various priors for 

the estimation of the model parameters for the malaria risk factors. Also, the 

performances of BLR in identifying the malaria risk factors were compared in relation to 

frequentist logistic regression (FLR). 

 

 



14 
 

2.0 Materials and Methods  

2.1 Data  

The data for this study were obtained from a cross-sectional study conducted in 
Gwagwalada-Abuja, Nigeria in 2016. The subjects were recruited into the study voluntary 
based on desire to participate. Health status of subjects in relation to malaria in the last 
15 days (a criterion based on NPC (2012)) were considered as outcome variable for 
logistic regression model (LRM) with eleven risk factors. These are gender, age group, 
marital status, occupation, education, family size, socio-economic status, residential area, 
ITNs, IRS and WDNs. 

2.2 Logistic regression 

Logistic regression is a statistical tool for modelling a binary dependent variable with one 
or more independent variables. It is a generalized linear regression model which uses 

logit as link function for the transformation of the model components. Let ( )ix represents 

the probability of event for individual i , ix are the vectors of risk factors and criterion 

variable denoted by y , which assumes a value 1 for the probability of occurrence and 0 

if otherwise. The logistic function is represented by (1) 
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1 1 2 2
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k k
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   



   




   (1) 

where: 𝜆(𝑥𝑖) is a probability of having malaria infection 

 𝛽𝑖 are the slope parameters 

 𝛼 is the intercept 

 𝑥𝑖 are the independent variables (malaria risk factors) 

The outcome variable y depends on the independent variables (𝑥𝑖), then, the logarithm 
transformation of the odds gives (2) 

logit λ(xi) = 𝑙𝑜𝑔 (
𝜆(𝑥𝑖)

1−𝜆(𝑥𝑖)
) = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘  (2) 

where 
 

(1, )i iy bern  , 𝑦𝑖|𝑥
|𝛽 = 𝜆𝑦𝑖(1 − 𝜆)1−𝑦𝑖

      

           
 

2.3 Bayes rule 

( ) ( | )
( | )

( )

p p Data
P Data

P Data

 
                  (3) 

Where:  𝑝(𝜆) is the prior probability 

    𝑝(𝐷𝑎𝑡𝑎|𝜆) is the likelihood of Data given 𝜆 

   𝑝(𝐷𝑎𝑡𝑎) is the marginal or the total probability 
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2.4 Likelihood 

Let 𝑥1, 𝑥2, … , 𝑥𝑘 be a set of independent Bernoulli distributed random variables, then, the 
likelihood function is given by (4):  

1 2( , ... ) ( / )k i iL x x x P x  ;
1

1 2( , ... ) { (1 ) } (1 )i ii i
x k xx x

k iL x x x    
     

 

1 2( , ... ) (1 )k

k iL x x x x          (4) 

From (1), it follows that:  

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

... ...

1 2 ... ...
( , ... ) ( ) (1 )

1 1

k k k k

k k k k
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       

       

       
 

       
   

 
   (5)

 

2.5 Prior probability distribution 

We assumed normal prior for our coefficients with zero mean and large variance to make 
it non-informative prior. Likewise, we also assumed a prior that is not perfectly flat with 
mean zero and a small variance. The parameters were assigned zero mean and precision 
1, 0.001, and 0.000001. The choice of the priors with large variance was to minimize the 
influence of prior on the likelihood and also to give every value of the parameters the 
same likelihood. This was done in line with literature on malaria risk factors (Onyiri, 2015) 
and other related study (Chiaka et al., 2015). 

2.6 Posterior distribution 

With the aid of Bayesian theorem, the kernel from the posterior is given by the product of 
the likelihood and the prior probability assumed for the parameters of interest. Thus, using 
equation (5) and a normal prior give the form of the posterior distribution (6). 
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           (6) 

2.7 Markov Chain Monte Carlo analysis via WinBUGS 

As in other Bayesian analysis, the BLR requires stating the following steps: the joint 
distribution of the outcome variable and all the model parameters, the likelihood function 
and posterior density in the regression. Based on the WinBUGS algorithms, the following 
assumptions were made for the logit model in line with related studies (Chiaka et al., 
2015; Onyiri, 2015). 

(i)  𝑦𝑖~𝑑𝑏𝑒𝑟𝑛, the outcome variable sis Bernoulli distributed  

(ii) ~ (0, )ib dnorm k , a normal prior assumed for each of the slope parameters 

(iii) 𝛼 = 0. 𝛽𝑖 = 1, the initial values for each of the parameters 

(iv) Iterations = 5,000; 50,000; 100,000; 150,000. 

 



16 
 

3.0 Results and Discussion  

3.1 Demographic characteristics 

Table 1 displays the participants’ demographic characteristics. The average age group of 
respondents was 32± 9 years. The unmarried were about one-third of the respondents 
are unmarried, while the households were characterized by large family sizes with over 
60% having a family size greater than or equals 4 persons. Of the 384 respondents, only 
134 (34.9%) had a tertiary education while the remaining had at most secondary. Refer 
to Table 1, the goodness-of-fit test revealed that there is a significant difference for each 
level of the socio-demographic variables we considered (p<0.05). 

 

 

Table 1: Socio-demographic characteristics 
Variables n (%) χ2 p-value 

Age groups 
18-25 
26-35 
36-45 
46 and above 

 
136(35.4) 
123(32.1) 
88(22.9) 
37(9.6) 

 
 
 
 

61.188 

 
 
 
 

<0.001* 
Gender 
Male  
Female  

 
234(60.9) 
150(39.1) 

 
 

18.375 

 
 

<0.001* 
Marital status 
Married 
Divorced 
Widow 
Single  

 
203(52.9) 
25(6.5) 
19(5.0) 

137(35.6) 

 
 
 
 

2.510E2 

 
 
 
 

<0.001* 
Education  
Tertiary 
Secondary 
Elementary 
Illiterate 

 
134(34.9) 
127(33.1) 
58(15.1) 
65(16.9) 

 
 
 
 

50.104 

 
 
 
 

0.001* 
Social status 
Poor 
Average  
Rich 

 
124(32.3) 
173(45.0) 
87(22.7) 

 
 
 

29.078 

 
 
 

<0.001* 
Family size 
1 
2 
3 
4 
More than 4 

 
31(8.1) 
35(9.1) 
45(11.7) 
100(26.0) 
173(45.1) 

 
 
 
 
 

190.740 

 
 
 
 
 

<0.001* 

χ2: Pearson chi-squared goodness-of-fit test for significant difference in observed scores/frequency. 
* Statistical significance at p<0.05. 
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3.2 Logistic regression model results 

Based on Table 2, the final multiple LRM included only four significant predictors (p<0.05). 
The female gender, smaller family size, non-usage of IRS and WDNs showed 
susceptibility towards malaria as odds of the disease were more likely compared to the 
reference categories. The overall fit of the final model over reduced model was assessed 
with the likelihood ratio test (-2LL=180.51, p≤0.001). 

 

Table 2: Multivariate logistic regression parameter estimates 

Model 
Predictor 

Model 
Coefficient 

Std Error Wald’s Chi-
Sq. 

OR 95% CI P-Value 

Gender 
Male 
Female 

 
0a 
1.238 

 
- 
0.303 

 
- 
16.639 

 
1.000 
3.448 

 
- 
1.904, 6.245 

 
- 
<0.001* 

Family Size 
<-4 Persons. 
>4 Persons. 

 
1.003 
0a 

 
0.294 
- 

 
11.602 
- 

 
2.726 
1.000 

 
1.532, 4.851 
- 

 
0.001* 
- 

IRS 
No 
Yes 

 
0.727 
0a 

 
.246 
- 

 
8.702 
- 

 
2.068 
1.000 

 
1.277, 3.350 
- 

 
0.003* 
- 

WDNs 
No 
Yes 

 
0.826 
0a 

 
0.251 
- 

 
10.800 
- 

 
2.284 
1.000 

 
1.396, 3.735 
- 

 
0.001* 
- 

Intercept 0.431 0.177 5.968 1.538 1.089, 2.176 0.015* 
aReference category, *Significant, OR=Odds Ratio; WDNs: Window and door nets, IRS: Indoor residual 
spray 

3.3 Bayesian results 

There were variations in the output of the simulation, especially with lower sample sizes 

using different values of precision. However, the means of the posterior distribution of the 

model coefficients are similar to FLR model when non-informative prior with large 

variance were used and at larger sample sizes (Tables 3). It thus allows the data to dictate 

the output of the analysis due to minimal influence of the diffuse prior. Considering the 

standard deviations of the estimated coefficients, the results revealed that the standard 

deviations of the non-informative prior with small variance (precision=1) (Table 4) were 

smaller than that of the non-informative prior with large variance (precision=0.000001) 

and the FLR. This implies that the BLR with the smaller standard error is better. Therefore, 

the higher the precision the better the results especially when the sample size is 150,000 

Figure 1 reveals the time series plot of the value of the parameter against the iteration 

number. It showed that there was no bad mixing as the chain was not stuck in the 

parameter space. 
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Table 3: Bayesian Monte Carlo output (Precision=0.000001, n=150,000) 
Node Mean SD MC Error Credible Interval 

    2.5%               97.5% 

Alpha 3.4420 0.4598 0.0051 2.5640 4.3720 
Gender -1.2730 0.3085 0.0026 -1.9010 -0.6893 
Family size -1.0280 0.2999 0.0024 -1.6320 -0.4530 
WDNs -0.8405 0.2564 0.0017 -1.3530 -0.3459 
IRS -0.7399 0.2485 0.0014 -1.2340 -0.2581 

SD: Standard deviation, MC: Monte Carlo, WDNs: Window and door nets, IRS: Indoor residual spray 

 

Table 4. Bayesian Monte Carlo Output (Precision=1, n=150,000)  

Node Mean SD MC Error Credible Interval 
    2.5%                  97.5% 

Alpha 2.7370 0.3691 0.0035 2.0300 3.4810 
Gender -0.9729 0.2685 0.0019 -1.5100 -0.4564 
Family size -0.7510 0.2625 0.0018 -1.2780 -0.2478 
WDNs -0.6709 0.2371 0.0013 -1.1410 -0.2089 
IRS -0.6186 0.2325 0.0012 -1.0790 -0.1658 

SD: Standard deviation, MC: Monte Carlo, WDNs: Window and door nets, IRS: Indoor residual spray 
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1001 50000 100000 150000
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Figure 1: Trace plots for posterior distribution. 

3.4 Discussion 

The multivariate logistic regression analysis based in this study was conducted to identify 
significant factors of malaria epidemic in Abuja, Nigeria.  

As stated  by Fayehun and Salami (2014), the gender of the household heads was found 
to be associated with malaria cases, as in other study  This study also showed that the 
odds of malaria cases were 3.45 times higher among households headed by a female 
than households without a female head. This implies that malaria is more likely among 
the household headed by a female with a chance of about 3 times greater than those 
headed by a male. The findings of the current study suggested that the possibility of the 
households being headed by a woman or presence of many children in the homes; as 
such suppression in immunity is expected in their body systems and make them more 
susceptible to malaria. This may likely increase the likelihood of more malaria cases 
reported. 

The result also revealed that more likely cases of malaria with family sizes less than four 
persons. This finding negates intuitive and insightful reasoning, as less malaria cases are 
expected in a low densely populated areas or houses. This might be due to the fact that 
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man biting rate (MBR) increases with reduction in number of occupants. Based on this 
result, the households with lower family sizes are at a higher risk of stable and high-
intensity malaria parasite transmissions as entomological inoculation rate might 
occasionally exceeds the threshold of 1.5 (Ebenezer et al., 2016). The higher the number 
of sporozoite-infected female Anopheles mosquitoes in a room or house relative to the 
number of occupants thereof, the higher the MBR and sporozoite rate. Hence, a higher 
disease transmission and more likely the disease cases reported. This finding was 
consistent with a study in SSA (Krefis et al., 2010). However, it contradicted with the 
findings of other related studies in Nigeria (Ajadi et al., 2012). That is, the higher likelihood 
of disease cases for larger family sizes. 

The use of intervention measures had been appraised and well documented in the 
literature (Baume & Franca-Koh, 2011). The study revealed that the higher the level of 
usage of these measures, the lower the disease prevalence. The finding we obtain was 
supported by earlier research on poor usage of IRS and WDNs (Amoran, 2013), and it is 
incongruent with that detailed in Olayemi et al. (2012).  

Based on the standard deviation and credible interval of the estimated coefficients, the 
results of BLR were comparable to FLR model with sufficient sample size simulated and 
at lower precision levels (Chiaka et al., 2015). However, it requires great caution as the 
choice of initial parameters and prior probabilities may affect the output of the simulation.  
 
4.0 Conclusion 

This study identified the risk factors of malaria in Abuja, Nigeria and also revealed the 
performances of both FLR and BLR. The significant factors are gender, family size, IRS 
and WDNs. Both methods yielded similar results when non-informative prior with large 
variance is assumed in BLR. The right choice of prior and large number of samples 
generated offer additional advantage for BLR.  
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CHAPTER 4  

Statistical Analyses in Validating the Performance of Optical Tomography 

System in Measuring Object Diameter 
 

Abstract 

Optical tomography is one of the tomography methods which are non-invasive and non-

intrusive system, consisting of emitter with detectors. This research are conducted in 

order to analyze and proved the capability of laser with Charge Coupled Device in an 

optical tomography system for measuring object diameter that exist in crystal clear water. 

Experiments in detecting and capturing static solid rod in crystal clear water are 

conducted using this hardware and software development. T-test and Analysis of 

Variance (ANOVA) were used to analyze and validate the experiments data with the help 

of Minitab 16 software. This software helped to solve the statistical calculation and 

analyses. As a conclusion, this research has successfully developed an optical 

tomography system that capable to measure the diameter of solid rod in non-flowing 

crystal clear water. The performance of the system are validated by statistical analyses 

results.  

Keywords: Statistical analyses; measurement; T-Test; Analysis of Variance (ANOVA); 
Minitab 16 software; optical tomography system 
 
INTRODUCTION 

 Multiphase detectors become an important instrumentation in industries for the 

purpose of monitoring and analysis of objects behavior in process system. Multiphase 

flow consists of two or three phases in one flow system. Gas, liquid and solid have 

different physical properties and move in different velocities. Process industries 

applications can be dividing into four group of multiphase flow as listed below. 

 i. Solid and gas  

ii. Solid and liquid  

iii. Gas and liquid 

 iv. Solid, liquid and gas 

Sediment flow is one of the two phase flow application system to monitor the mixing 

of solid and liquid. This sediment flow system usually applied for monitoring and 

controlling the rivers contents especially to avoid pollution occurred. Controlling rivers 

quality is important for good health environment. Rivers that near with industries 

especially need to apply this sediment flow measurement system to control the quality of 

water.  This system is focus on mass and momentum exchange between the sedimentary 

and carrier fluid (Michaelides, 2006). Sedimentary particles usually contents molecules 

of heavy metals, organic and inorganic pollutants.  
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There are two types of two-phase flow detector, intrusive and invasive technique 

or non-intrusive and non-invasive technique. Intrusive technique is a technique that 

directly contact to the flow regime. There are variety types of flow regime technique such 

as impedance probe, electrical resistance probe, optical fiber probe, ultrasound 

technique, endoscope probe and hot film anemometry (Kumar, Dudukovic, & Toseland, 

1996).   

But, non-intrusive techniques become popular in process industries because this 

application does not disturb the flow of liquid and can give more accurate data 

measurement. The examples of non-intrusive technique are; pressure transducer, 

visualization technique, Gamma-ray density gauge, laser technique, X-Ray technique, 

Positron Emission Tomography (PET), Magnetic Resonance Tomography (MRI), 

Computed Tomography (CT), Electrical Capacitance Tomography (ECT) and Optical 

Tomography (Yang, Du, & Fan, 2007) (Kumar, Dudukovic, & Toseland, 1996). 

Tomography method has been used since 1950 in medical fields and being spread 

into industry by 1990 (M.S.Beck, 1996). Tomography system is suitable to apply for non-

invasive and non-intrusive monitoring system, especially for the industries that deal with 

the multiphase flow. Optical tomography (OPT) is the best approach because this method 

consists of hard field sensors (Rahim, Optical Tomography System: Principles, Technique 

and Applications, 2011) where the sensor does not depend on the changes of conductivity 

or permittivity of subjects that are being analyzed. OPT system provide a good spatial 

resolution where it can capture a very detailed image without making the pixels visible. 

OPT also provides a high speed data capturing system and it is suitable for online 

monitoring system applications (Spring, Fellers, & Davidson, 2013).  

The aim of this research project is to build an OPT system using the combination 

of Charge Coupled Device (CCD) linear sensor and laser diode with LabVIEW software 

to detect multiphase flow. Qualitative and quantitative analyses were done using the 

LabVIEW and Minitab software. Minitab software are used for statistical analysis, while, 

LabVIEW programming are developed to measure the object diameter and to produce a 

cross-sectional pipeline image for online data. 

 

RESEARCH METHODOLOGY 

All the experiments are conducted at room temperature between 25oC to 33oC and 

relative humidity is within 65% to 85%. Light scatterion and diffraction effect are minimal 

and it is ignored from the calculations. The luminosity for lasers is maintained at 0.3 Lux 

value for full non-flowing crystal clear water experiments. The laser Lux values are 

measured using UNI-T UT381 Lux meter. Figure 1 shows the mechanical diagram of the 

suggested OPT system using CCD linear sensors and laser diodes. 
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Figure 1: Mechanical diagram of OPT and pipeline system (Jamaludin, J & Rahim, R.A, 

2016). 

Meanwhile, Figure 2 shows the illustration of cross-sectional image of pipeline and OPT 

system ( upper and lower plane) from side view.  

 

Figure 2: Illustration of cross-sectional image of pipeline and OPT system from side view 

 Experiments that involved in this research study are to validate the offline OPT 

system LabVIEW programming in detecting and measuring diameter of a solid rod. 

Results and discussions in this research are focusing on analyzing the capability of online 

CCD OPT system in capturing solid rod diameter in static crystal clear water. T-test and 

ANOVA were applied to analyze and validate the experiments data with the help of 

Minitab 16 software to do the statistical calculation.  
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RESULTS 

A series of experiments were conducted to evaluate the capability of this system 

in capturing and measuring objects diameter exist in crystal clear water. The objects that 

involved is solid rod.  

 In order to have a targeted diameter value, the objects must first be measured by 

a Vernier Caliper. The known accuracy of the Vernier Caliper are at ±0.01 mm, while the 

OPT system accuracy are at ±0.0001 mm. The solid rod diameter is 8.54 mm based on 

the Venier Caliper reading as shown in Figure 3. This values will be used as the targeted 

mean value.  

The totals of 50 diameter measurement of solid rod were observed using OPT 

system.  Figure 4 below shows the example of LabVIEW programming front panel for 

solid rod diameter measurement. Figure 4 (a) are showing readings of CCD sensor 1 to 

4 (upper plane) and Figure 4 (b) are showing readings of CCD sensor 5 to 8 (lower plane). 

 

Figure 3: Diameter value for solid rod using Vernier calliper 

 

(a) 
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                                                                  (b) 

Figure 4: Offline LabVIEW programming in diameter measurement of solid rod from (a) 

upper and (b) lower plane point of view (Jamaludin, J & Rahim, R.A, 2016). 

 

DISCUSSION 

T-test was used to validate the ability of OPT system in measuring diameter of 

static objects.  Fifty data of the diameter measurement was obtained for this evaluation.  

The main objective of this analysis are to compare the measured diameter captured by 

the OPT system with the actual diameter value which measured by a Vernier Caliper.  

The two hypotheses involved in this analysis are;  

 

H0: Mean of experiment static object diameter data = Caliper measured static object 

diameter data 

H1:  Mean of experiment static object diameter data ≠ Caliper measured static object 

diameter data 

 

Minitab 16 software will generate a graphical chart for a visual understanding of 

each evaluation as shown in Figure 5.  The charts are known as individual value plot 

graph where the red dotted presented the data samples distribution, x bar equal to 

samples mean, blue line are acceptable mean range and light red circle represent the 

targeted diameter value of solid rod. For P-value greater than 0.05, the null hypothesis 
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could not be rejected.  In other words, the sample mean value is equal to the targeted 

mean value (Ross, Analysis of Variance, 2009). 

 

a) Summary of solid rod upper plane data measurement (T-test, P-value = 0.112) 

P-value for OPT system upper plane data of solid rod are more than 0.05, thus we 

fail to reject the null hypothesis.  This shows that based on the one sample T-test, the 

mean value of upper plane OPT system solid rod diameter measurements are not 

statistically different with the solid rod diameter value measured by Vernier Caliper.  

 

b) Summary of solid rod lower plane data measurement (T-test P-value = 0.130) 

P-value for OPT system lower plane data of solid rod are more than 0.05, thus we 

fail to reject the null hypothesis.  This shows that based on the one sample T-test, the 

mean value of lower plane OPT system solid rod diameter measurements not statistically 

different with the solid rod diameter value measured by Vernier Caliper.  

 

One-Sample T: Solid Rod (Upper Plane) 

Test of mu = 8.54 vs not = 8.54 

Variable          N      Mean    StDev    SE Mean          95% CI            T        P 

Upper Plane  50  8.55359  0.05935  0.00839  (8.53672, 8.57046)  1.62  0.112 

One-Sample T: Solid Rod (Lower Plane) 

Test of mu = 8.54 vs not = 8.54 

Variable          N     Mean    StDev    SE Mean        95% CI               T        P 

Upper Plane  50  8.55532  0.07037  0.00995  (8.53532, 8.57532)  1.54  0.130 
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Figure 5: T-test graph result for solid rod upper and lower plane diameter measurement 

(Jamaludin, J & Rahim, R.A, 2016). 

 

ANOVA test was applied to study the capability of upper and lower plane OPT 

system in measuring the same static object diameter. This statistical analysis is to validate 

the variation of the solid rod diameter measured at the upper plane with the variation of 

the solid rod diameter measured at lower plane.  

According to ANOVA test, the statistical significant value or P-value below than 

0.05 mean that the null hypotheses must be rejected and accepted the alternative 

hypothesis (Ross, Analysis of Variance, 2009). The hypotheses for upper and lower plane 

static object diameter measurement are as below; 

H0: Mean of upper plane single static object diameter measurements = Mean of lower 

plane single static object diameter measurements  

H1: Mean of upper plane single static object diameter measurements plane ≠ Mean of 

lower plane single static object diameter measurements 

Figure 6 show the ANOVA test results for solid rod samples. In Figures 6, it shows 

the individual value plot for solid rod upper and lower plane samples data measurement. 

The P-value obtained from the ANOVA test was equal to 0.895 which greater than 0.05. 

The mean values of solid rod observed by upper plane are equal to 8.5536 mm and lower 

plane are equal to 8.5553 mm with standard deviation equal to 0.0594 and 0.0704.  At 

95% confident interval, both groups mean and standard deviations are overlapped 

between one and another.  This lead to the acceptation to null hypothesis for this solid 

rod experiment.  It is concluded that both upper and lower plane OPT system are indeed 

measuring the same solid rod. 

 

  

One-way ANOVA: Solid Rod: Upper Plane, Lower Plane 

Source  DF       SS       MS     F      P 

Factor   1  0.00007  0.00007  0.02  0.895 
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Error   98  0.41525  0.00424 

Total   99  0.41533 

S = 0.06509   R-Sq = 0.02%   R-Sq(adj) = 0.00% 

Figure 6: ANOVA test graph results and data summarization for solid rod (Jamaludin, J & 

Rahim, R.A, 2016). 

 

CONCLUSION 

The OPT system developed is a non-intrusive and non-invasive technique for two-

phase flow measurement. This system is safe and it does not pollute the environment 

with any chemicals or hazardous radiation. Since no probes or sensors need to be fitted 

in the liquid medium, this system offers more accurate data due to the absence of any 

interference of the OPT system in the pipeline processes.  

Also, it is concluded that the OPT system consisting of laser and CCD as it 

transmitter and receiver, with LabVIEW as the programming platform are proven to have 

the capabilities in measuring objects diameter. In single static object experiments, it is 

determined that OPT system are indeed measuring the diameters of solid rod. Based on 

the T-test and ANOVA test results, it is proved that CCD linear sensor OPT system are 

reliable system in measuring objects diameter in static crystal clear water.   
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CHAPTER 5  

New Weighting Method for Robust Heteroscedasticity Consistent Covariance 
Matrix Estimator in Linear Regression 

 
Abstract 

The presence of high leverage points (HLPs) and heteroscedasticity are very common 
in empirical analyses using regression model. Weighted least squares are usually used 
to remedy the problem of heteroscedasticity if the heteroscedastic error structures are 
known.  Heteroscedasticity consistent covariance matrix (HCCM) estimator is an 
alternative method in the case of unknown errors structure to remedy both the effect of 
leverage points and heteroscedasticity. However, the HCCM suffers tremendous effect 
due to the effect of masking and swamping. We proposed a HCCM based on modified 
generalized studentized residuals (MGt) based on DRGP(ISE). The results obtained 
from real data sets indicate that MGt weighting method outperformed the existing 
weighting method.  

Keywords: ordinary least squares, robust HCCM estimator, weighted least squares, 
high leverage points. 
 
1.0    Introduction 

 A linear regression model is normally analyzed by ordinary least squares (OLS) 
method. The homoscedasticity (equal variances of the errors) assumption is often 
violated in most empirical analyses which lead to heteroscedastic errors (unequal 
variances of the errors). In that case OLS provides inefficient parameter estimates and 
the inference becomes unreliable due to the inconsistency of the variance-covariance 
matrix estimator. 
The most widely used estimation strategy for a heteroscedasticity of unknown form is to 
perform OLS estimation, and then employ a heteroscedasticity consistent covariance 
matrix (HCCM) estimator denoted by HC0 (see White, 1980). It is consistent under both 
homoscedasticity and heteroscedasticity of unknown form. MacKinnon and White 
(1985) proposed another HCCM estimator namely the HC1 and HC2. Davidson and 
MacKinnon (1993) modified HC2 and named it HC3 which is closely approximated to 
Jackknife estimator. Cribari-Neto (2004) proposed another HCCM estimator and called 
it HC4 where he adjusted the residuals by a leverage factor. Cribari-Neto et al. (2007) 
then proposed HC5 estimator, whereby they modified the exponent used in HC4 in 
order to consider the effect of maximal leverage. 
It is important to note that HCCM estimators are constructed using OLS residuals vector. 
In the presence of high leverage points (HLPs), the coefficient estimates and residuals 
are biased. As a consequence, the inference becomes misleading. Furno (1996) 
proposed robust heteroscedasticity consistent covariance matrix (RHCCM) in order to 
reduce the biased caused by leverage points. He employed residuals of weighted least 
squares (WLS) regression where the weights are determined by the leverage measures 
(hat matrix) of the different observations. The shortcoming of Furno’s method is that, in 
the presence of HLPs, the variances tend to be large resulting to unreliable parameter 
estimates which is due to the effect of swamping and masking of HLPs. The main reason 
for this weakness is the used of hat matrix in determining the weight of the RHCCM 
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algorithms of Furno (1996). It is evident that hat matrix is not very successful in detecting 
HLPs (Habshah et al. 2009). Consequently, less efficient estimates are obtained by 
employing unreliable method of detecting HLPs. His work has motivated us to use weight 
function based on more reliable diagnostic measure for the identification of HLPs. We 
proposed a new robust weighting method based on HLPs detection measures termed 
FMGt-DRGP The weights determined by FMGt-DRGP are expected to successfully down 
weight all bad HLPs.  
 
2.0 Methodology 
 
2.1 Heteroscedasticity Consistent Covariance Matrix (HCCM) Estimators 
 
The regression model given by: 

                                                               𝑦 =  𝑋 𝛽 +  𝜀                   
(1) 

where, 𝑦 is an 𝑛 × 1 vector of responses, 𝑋 is an 𝑛 × 𝑝 matrix of independent variables, 
𝛽  is a vector of regression parameters, and 𝜀 is the n-vector of random errors. For 

heteroscedasticity the errors are such that 𝐸(𝜀𝑖) = 0, 𝑣𝑎𝑟(𝜀𝑖) = 𝜎𝑖
2 for  𝑖 = 1, … , 𝑛 and, 

𝐸(𝜀𝑖 𝜀𝑠) = 0 for all 𝑖 ≠ 𝑠. Covariance matrix of 𝜀 is given as Φ = diag {𝜎𝑖
2}. The ordinary 

least squares (OLS) estimator of 𝛽  is 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦 which is unbiased, with the 

covariance matrix given by:  

                                              𝑐𝑜𝑣(𝛽̂) = (𝑋′𝑋)−1𝑋′Φ𝑋(𝑋′𝑋)−1                                      (2) 

However, under homoscedasticity 𝜎𝑖
2 =  𝜎2 which implies Φ =  𝜎2𝐼𝑛, where 𝐼𝑛 is an 𝑛 ×

𝑛 identity matrix. The covariance matrix 𝑐𝑜𝑣(𝛽̂) =  𝜎2(𝑋′𝑋)−1 is estimated by 𝜎̂2(𝑋′𝑋)−1 

(which is inconsistent and biased under heteroscedasticity) and 𝜎̂2 = 𝜀̂′𝜀̂ 𝑛 − 𝑝⁄ , 𝜀̂ =
(𝐼𝑛 − 𝐻)𝑦 , where H is an idempotent and symmetric matrix known as hat matrix or 
leverage matrix or weight matrix as named by different authors. The hat matrix (H) is 

defined as 𝐻 = 𝑋(𝑋′𝑋)−1𝑋′, and it plays great role in determining the HLPs in 

regression model. The diagonal elements hi = 𝑥𝑖(𝑥′𝑥)−1𝑥𝑖
′ for  𝑖 = 1, … , 𝑛 of the hat 

matrix are the values for leverage of the ith observations. 
White (1980) proposed the most popular HCCM estimator known as HC0 where he 

replaced the 𝜎𝑖
2 with 𝜀𝑖̂

2 in covariance matrix of 𝛽̂ as: 

                                                 𝐻𝐶0 = (𝑋′𝑋)−1𝑋′Φ̂0𝑋(𝑋′𝑋)−1                                      (3) 

where, Φ̂0 = diag {𝜀𝑖̂
2}. HC0, HC1, HC2, and HC3 are generally biased for small sample 

size (see Furno 1997; Lima et al. 2009; Hausman and Palmer 2011). This research will 
focus on HC5.  
Cribari-Neto et al. (2007) modify of the exponent of HC4 in order to control the level of 
maximal leverage and named it HC5 defined as: 

                                                  𝐻𝐶5 = (𝑋′𝑋)−1𝑋′Φ̂5𝑋(𝑋′𝑋)−1                                    (4) 

where, Φ̂5 = diag {
𝜀̂𝑖

2

√(1−h𝑖)αi
 } for 𝑖 = 1, … , 𝑛 with αi = min { 

hi

h
, max {4,

khmax

h
}}, which 

determine how much the ith squared residual should be inflated, given by the ratio 

between  hmax (maximal leverage) and h (mean leverage value of hi’s). when  
hi

h
 ≤ 4 it 
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follows that 𝛼𝑖 =
hi

h
. Also, since 0 < 1 − hi < 1 and 𝛼𝑖 > 0, it similarly follows that 0 <

(1 − hi)
𝛼𝑖 < 1 and k is a constant ranges between 0 < k < 1 and was suggested to be 

0.7 by Cribari-Neto et al. (2007).  
 
2.2 Robust HCCM Estimators 

The problems of heteroscedasticity and high leverage points was addressed by Furno 
(1996) in order to reduce the bias caused by the effect of leverage points in the 
presence of heteroscedasticity. He suggested using WLS regression residuals instead 
of OLS residuals used by White (1980) in HCCM estimator. The weight is based on the 
hat matrix (hi) and the robust (weighted) version of HC0 is defined as: 

                                      𝐻𝐶0𝑊 = (𝑋′𝑊𝑋)−1𝑋′𝑊Φ̂0w𝑊𝑋(𝑋′𝑊𝑋)−1                               (5) 

where, 𝑊 is an 𝑛 × 𝑛 diagonal matrix with, 

                                                     𝑤𝑖 = 𝑚𝑖𝑛(1, 𝑐/h𝑖),                                                    (6) 
and c is the cutoff point, 𝑐 = 1.5𝑝/𝑛 , p being the number of parameters in a model 

including the intercept and n is the sample size, Φ̂0w = diag  {𝜀𝑖̃
2} with 𝜀𝑖̃ being the ith 

residuals from weighted least squares. Note that, non-leveraged observations are 

weighted by 1 and leveraged observations are weighted by (𝑐/hi) to reduce their 
intensity and 𝑤𝑖 is considered as the weight in this weighted least squares (WLS) 
regression, so that the WLS estimator of 𝛽  is: 

                                                   𝛽 = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑦.                                                   (7) 
The robust HCCM estimator for the HC5 based on Furno’s weighting method is defined 
as:                               

                                        𝐻𝐶5𝑊 = (𝑋′𝑊𝑋)−1𝑋′𝑊Φ̂5w𝑊𝑋(𝑋′𝑊𝑋)−1                              (8) 

where, Φ̂5w = diag {
𝜀̃𝑖

2

√(1−hi
∗)

αi
∗
 } for 𝑖 = 1, … , 𝑛 with αi

∗ = min { 
hi

∗

h∗ , max {4,
kh∗

max

h∗ }}, the ith  

diagonal elements of the weighted hat matrix 𝐻𝑤 = √𝑊𝑋(𝑋′𝑊𝑋)−1𝑋′√𝑊. In this paper 
the Furno’s WLS for RHCCM estimation method is denoted by WLSF. 
                         
2.3 New proposed Robust HCCM estimator 

In this study, we employed the idea of Furno’s RHCCM estimation on new weighting 
method based on modified generalized studentized residuals (MGt) and diagnostic 
robust generalized potential based on index set equality (DRGP (ISE)) (Lim and 
Habshah 2016) in order to detect good and bad HLPs. The DRGP(ISE) consist of two 
steps, whereby in the first step, the suspected HLPs are determined using RMD based 
on ISE. The suspected HLPs will be placed in the ‘D’ set and the remaining in the ‘R’ 

set. The generalized potential (𝑝̂𝑖) is employed in the second step to check all the 
suspected HLPs, those possess a low leverage point will be put back to the ‘𝑅’ group. 

This technique continued until all points of the ‘𝐷’ group has been checked to confirm 
whether they can be referred as HLPs. The generalized potential is defined as follows: 
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               (9) 
 
 

The cut-off point for DRGP is given by, 
                                              𝐶𝐷𝑅𝐺𝑃 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑝̂𝑖) + 3 𝑄𝑛 (𝑝̂𝑖)                                    (10)  
 

𝑄𝑛 is employed to improve the accuracy of the identification of HLPs. 𝑄𝑛 =
𝑐{|𝑥𝑖 − 𝑥𝑗 |; < 𝑗}(𝑘) is a pair wise order statistic for all distance proposed by Rousseeuw 

and Croux (1993) where 𝑘 = 𝐶`
ℎ

2 ≈ 𝐶`
ℎ

2/4 and ℎ = [𝑛/2] + 1. They make used of c = 

2.2219, as this value will provides 𝑄𝑛  a consistent estimator for gaussian data. If some 

identified 𝑝̂𝑖 did not exceed 𝑐𝑑𝑖 then, the case with the least 𝑝̂𝑖 will be returned to the 
estimation subset for re-computation of 𝑝̂𝑖. The values of generalized potential based on 
final ‘𝐷’ set is the DRGP(ISE) represented by  𝑝̂𝑖 and the ‘𝐷’ points will be declared as 
HLPs. The modified generalized studentized residuals (MGt) (Mohammed and Habshah 
2015) is given by, 

 

                 (11) 

where 𝜀𝑖̂(𝑅∗), 𝜎̂(𝑅∗) are the OLS residuals and residuals standard error for remaining set 

R, respectively. The observations are called influential observation when their values of 
MGti greater than its cut-off point (CMGti). The CMGti is calculated as follows: 

 

                                   𝐶𝑀𝐺𝑇𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝐺𝑡𝑖) + 𝑐𝑀𝐴𝐷(𝑀𝐺𝑡𝑖)       (12) 
    
To classify HLPs we plot MGt versus DRGP(ISE) and follows the procedure given by 
Mohammed and Habshah (2015) of classification of HLPs. 
 
i. Regular observation (RO): An observation is declared as regular observation if 

|𝑀𝐺𝑡𝑖| ≤ 𝐶𝑀𝐺𝑡𝑖 and |𝐷𝑅𝐺𝑃𝑖| ≤ 𝐶𝐷𝑅𝐺𝑃𝑖 
ii. Vertical  outlying observation (VO): Any observation is declared as VO if  

|𝑀𝐺𝑡𝑖| > 𝐶𝑀𝐺𝑡𝑖 and |𝐷𝑅𝐺𝑃𝑖| ≤ 𝐶𝐷𝑅𝐺𝑃𝑖            
iii. Good leverage observation (GLO): Any observation is declared GLO if  

         |𝑀𝐺𝑡𝑖| ≤ 𝐶𝑀𝐺𝑡𝑖 and |𝐷𝑅𝐺𝑃𝑖| > 𝐶𝐷𝑅𝐺𝑃𝑖 
iv. Bad leverage observation (BLO): Any observation is declared BLO if 

         |𝑀𝐺𝑡𝑖| > 𝐶𝑀𝐺𝑡𝑖 and |𝐷𝑅𝐺𝑃𝑖| > 𝐶𝐷𝑅𝐺𝑃𝑖 
 
So, we down weight only VO and BLO and employed RHCCM estimation methods 
discussed in Section (2) to obtain the RHCCM estimator based on MGt-DRGP(ISE) 
weighting method denoted by WLSFMGt. 
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3.0  Method Applications 
 

3.1 Data Used 
 

We employed education expenditure data used by Chatterjee and Hadi (2006) that 
represents the relationship between per capita income on education project for 1975 
and three independent variables namely, per capita income in 1973 (𝑥1), number of 
residents per thousands under 18years of age (𝑥2) and number of residents per 
thousands under 18years of age in 1974 (𝑥3). The new proposed method (WLSFMGt) 
and existing methods (OLS and WLSF) were applied to the data. 
 
4.0  Results and Discussions 
 
Figure 1(a) – 1(c) shows the plot of residuals vs fitted values of OLS, WLSF and 
WLSFMGt respectively, which indicate the presence of heteroscedasticity due the 
systematic pattern produce by the variances of the error terms. Figure 1(d) shows the 
classification of observations where the 49th observation is declared as BIO, 3rd , 4th, 5th 
and 42nd were declared as GIO, the  rest of the observations are RO. 

           

 
          
Figure 1. Plot of OLS residuals versus fitted values (a – c) and MGti versus DRGPi 
(d) for education expenditure data                                 
               
 

c 

b a 

d 
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       Table 1: Regression estimates for the education expenditure data set. 
 

  
Estimator 

 
    Coeff. of 
   
Estimates 

 
    Standard 

    Errorof      
Estimates 

                          
     Standard Error 

 
 

of HC5 
   

  

 OLS     b0   

                 b1 

             b2 

             b3 

-556.5680 
0.0724 
 1.5521 
-0.0043 

123.1953 
0.0116 
0.3147 
0.0514 
 

0.0003 
  0.0131 
  0.0948 
0.0764 

   

 
 
 

WLSF    b0 

                    b1           
             b2                           

       b3 

-496.6444   
0.06811 
1.4028 
0.0076 

 128.6804           0.0002
  
 0.01193            
0.0121 
 0.3318            0.0939 
 0.0525            0.0663 

 

    

 WLSFMGti  b0   

                 b1 

             b2 

             b3 

-412.2189 
0.0599 
1.2079 
0.0325 

128.9292            0.0002                     
 0.0119               0.0098 
 0.3251            0.0809    
0.0503                0.0507 

    

 
We modified the data by introducing HLPs contamination, in which the 2nd, 27th and 

40th observations were replaced by 1323, 817 and 1605 for 𝑥2, 𝑥1, 𝑥3 respectively. 
Figures 2 shows the classification of the observations.  

                      

       Figure 2. Plot of MGti versus DRGPi for modified education expenditure data.      
 
 
 
 
 
                           
 



37 
 

   Table 2: Regression estimates for the modified education expenditure data set. 
 

  
Estimator 

 
Coeff. of 
Estimates 

 
 Standard 
  Error        
Estimates 

 
Standard Error 

 
 

of HC5 
 

  

 OLS          b0   

                       b1 

                       b2 

                 b3 

114.6463 
0.0372 
-0.0314 
0.0130 

  55.0662 
  0.0100 
  0.0529 
  0.0428 

     0.0085 
    0.9777 
   
18.8106 
    2.0328 

  

 
 
 

WLSF          b0 

                         b1           
                 b2   
                 b3                                                                       

47.7726 
0.0440 
0.0882 
0.0036 

  69.7880 
  0.0113 
  0.1310 
  0.0547 

0 0.0012 
0.0170 
0.1234 
0.0824 

   

 WLSFMGti   b0   

                     b1 

                b2 

                b3 

113.1523 
0.0302 
0.0082 
0.0402 

  51.8968 
  0.0089 
  0.0307 
  0.0374 

0.0003 
0.0168 
0.1684 
0.0485 

   

 
Tables 1 and 2 show the results of the education expenditure and modified education 
expenditure data sets. The results indicate that the new proposed WLSFMGt  
outperformed the existing methods by providing a small standard errors of the estimates 
and HC5. It can be concluded that the WLSFMGt is better and more efficient then WLSF 

and OLS in the estimation of heteroscedastic model in the presence of HLPs in a data 
set. 
  
 5.0 Conclusion  
In this paper, we proposed a new weighting method for robust heteroscedasticity 
consistent covariance matrix (HCCM) estimator. The robust HCCM estimator based on 
our weighting method provides an efficient parameter estimates for a heteroscedastic 
model when there exist high leverage points in a data set.  The OLS method becomes 
inefficient and the Furno’s WLS based on leverage weight function also not efficient 
enough to remedy the problem of heteroscedastic errors with unknown form and high 
leverage point. The WLSFMGt was found to be the best method as it’s provides the 
lowest standard errors of parameter estimates and HC5. 
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CHAPTER 6 

On the Performance of Wild Bootstrap based on MM-GM6 Estimator in the 

Presence of Heteroscedastic Errors and High Leverage Points 

 
Abstract   
 
The violation of constancy of variance of error terms causes the problem of 
heteroscedasticity. OLS estimate is no longer efficient in the presence of 
heteroscedasticity in a data set, because the OLS estimates will be biased and 
inconsistent. As an alternative, a weighted residuals (wild bootstrap) may be used to 
remedy this problem. However, the weakness of wild bootstrap is that, in the presence of 
outliers the estimates of the standard errors become large. Therefore, a robust wild 
bootstrap is formulated based on MM-GM6 estimator so that the problems of both 
heteroscedasticty and outliers can be rectified. The results show that the proposed 
method performs better than the existing ones such as OLS, Wu, and Liu. 
 
Keywords: Heteroscedasticity, outliers, wild bootstrap, high leverage point  
 

Introduction 

Bootstrap technique was proposed by Efron and Tibshirani [1].It is a statistical method 

that can replace theoretical formulation with extensive use of computer .This method does 

not depend on the distributional assumptions and is able to estimate the standard errors 

of parameter estimates without theoretical calculations. There are many papers which 

deal with bootstrap methods (see [2-4]).  

Multiple regression analysis is a statistical technique used widely for modelling and 

analysing the relationship between one dependent variable and two or more independent 

variables. The standard linear regression model can be defined as: 

                                                                         Y = Xβ + ε                                                              (1) 

Where 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 , 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ,and 𝜀 = (𝜀1, 𝜀2, … , 𝜀𝑛)𝑇 . In equation (1), 𝛽 

is a k×1vector of unknown parameters, Y is an n×1 vector , X is an n×k data matrix of 

independent variables ,and 𝜀 is an n×1 vector of unobservable random errors such that 

𝜀~𝑁𝐼𝐷(0, 𝜎2) . The assumption of stability of variance 𝑉𝑎𝑟(𝜖𝑖) = (𝜎𝐼) is often violated. As 

a consequence, Wu [5] proposed a wild bootstrap that can be utilized to evaluate the 

standard errors which are asymptotically and accurate under non stability of variance. Liu 

[6] proposed another wild bootstrap method which is slightly different from Wu’s method. 

Nevertheless, (Midi ,et.al) [7] stated that  there is evidence that the Wild Bootstrap 

estimator suffer a huge set back in the presence of a few atypical observations that we 

often call outliers. Therefore, they incorporated the robust MM estimator. However, the 

MM-estimator does not have a bounded influence property. On the other hand, the GM6 

estimator is robust in the X-direction.Thus, In this paper, we want to investigate an 
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alternative wild bootstrap in the wild bootstrap algorithm based on robust MM-GM6 

estimator . 

 

Wild bootstrap technique 

Heteroscedasticity is a common problem in linear regression model, occurs when the 

variance of error terms are not stable. In this case, OLS estimator is no longer efficient. 

The fixed x bootstrapping  the residual method is suggested by Efron and Tibshirani 

[1].This bootstrapping procedure is based on the ordinary least squares residuals that 

can be summarized as follows: 

Step 1. Fit a model  𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽𝑜𝑙𝑠)by the Ols method to the original sample of 

observations to get 𝛽̂𝑜𝑙𝑠and hence the fitted model is 𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽̂𝑜𝑙𝑠) 

Step 2. Compute the OLS residuals 𝜀𝑖̂ = 𝑦𝑖 − 𝑦̂𝑖 and each residual 𝜀𝑖̂ has equal probability 

,
1

𝑛
. 

Step 3. Draw a random sample 𝜀∗
1, 𝜀∗

2, … , 𝜀∗
𝑛 from 𝜀𝑖̂ with simple random sampling with 

replacement and attached to 𝑦̂𝑖 to obtain Fixed-x bootstrap values 𝑦∗𝑏
𝑖
 where 𝑦∗𝑏

𝑖
= 

𝑓(𝑥𝑖, 𝛽̂𝑜𝑙𝑠) + 𝜀∗𝑏
𝑖 . 

Step 4. Fit the OLS to the bootstrap value 𝑦∗𝑏
𝑖
 on the Fixed-x to obtain 𝛽̂∗𝑏

𝑜𝑙𝑠
 

Step 5. Repeat Steps 3 and 4 for B times to get β̂∗b1
ols

,…, β̂∗bB
ols

 where B is the bootstrap 

replications. 

This bootstrap is called 𝐵𝑜𝑜𝑡𝑜𝑙𝑠 since it is based on the OLS method 

Wu [5] slightly modified Step 3 of the OLS bootstrapping procedure to add the weight in 

the residual as follows. 

                                                        y∗b
i

= f(xi, β̂ols) +
ti

∗ε̂i

√1−hii
                                                   (2)     

Where, 𝑡𝑖’s can be selected from a standard normal and ℎ𝑖𝑖 is the ith leverage which 

represents the diagonal of 𝐻𝑎𝑡 𝑚𝑎𝑟𝑖𝑥 = 𝑋(𝑋′𝑋)−1𝑋′ 

Liu’s bootstrap can be conducted by drawing random numbers 𝑡𝑖
∗ in the following way. 

𝑡𝑖
∗ = 𝐻𝑖𝐷𝑖 − 𝐸(𝐻𝑖)𝐸(𝐷𝑖), 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝐻1, 𝐻2, … 𝐻𝑛 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 
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𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛  
1

2
(√

17

6
+ √

1

6
)  𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

1

2
 . 

𝐴𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠, D1, D2, … Dn𝑎𝑟𝑒 𝑖𝑖𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 
1

2
(√

17

6
− √

1

6
)  

𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
1

2
 . 

Proposed Robust Wild Bootstrap Technique 

The wild bootstrap  is not resistant to outliers because its algorithm is based on the OLS 

residuals. Thus,  in this paper we incorporate the MM- GM6 estimator in the wild bootstrap 

algorithm. The GM6-estimator aims to down weight outliers both  X and  Y coordinates to 

insure that HLPs get lower weights, while the MM estimator is robust to outliers in Y 

coordinate.  The steps of MM-GM6 wild bootstrap can be summarized as follows: 

Step 1. Fit the regression model 𝑦𝑖 = 𝑥𝑖𝛽 + 𝜀𝑖 by using  MM estimator to the original data 

to obtain the robust parameters 𝛽̂𝑀𝑀, then 𝑦̂𝑖 = 𝑥𝑖𝛽̂𝑀𝑀 and hence the fitted model is 𝑦̂𝑖 =

xiβ̂MM 

Step 2. Find the residuals of the MM estimate 𝜀𝑖̂
𝑀𝑀 = 𝑦𝑖 − 𝑦̂𝑖. Then  assign the weight of 

GM6 to each residual such that 𝑤𝑖 = min (1,
𝜒2

0.95,𝑝

𝑀𝑉𝐸
) , where MVE is the minimum-volume 

ellipsoid. 

Step 3. The final weight residual of the MM estimate denoted by  𝜀𝑖̂
𝑊𝑀𝑀 are formulated by 

multiplying the weight obtained in Step 2 with the residual of the MM estimates.  

Step 4. Construct a bootstrap sample (𝑦∗
𝑖
, 𝑋 ) , where  

                                               y∗
i

= xiβ̂MM + ti
∗ × min (1,

χ2
0.95,p

MVE
) 𝜀𝑖̂

𝑀𝑀                              (3)   

and 𝑡𝑖
∗  is a random sample following Liu[6] procedure. 

Step 5. The MM procedure is then applied to the bootstrap sample (𝑦∗
𝑖
, 𝑋 ) and the 

resultant estimate is denoted by 𝛽̂∗𝑅 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦∗. 

Step 6. Repeat Steps 4 and 5 for B times, where B is the bootstrap replications. 

Numerical Example 

In this section, a numerical example is presented to assess the performance of the 4 

methods, bootols, bootwu, bootliu , and bootGM6-MM. A set of real data is used to test the 

efficiency of the methods. The Concrete Compressive Strength data is taken from Yeh 

[8]. Concrete compressive strength is the response variable and Age (day), Fine 

Aggregate, Coarse Aggregate, Super plasticizer, Water , Fly Ash, Blast Furnace Slag, 

and Cement) are the set of predictor variables. We purposely replaced 2 good 
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observations with outliers in the y directions, indicated by 1 and 1030 to create outliers in 

the data set, so that their effect on the parameter estimates can be investigated. The 

bootols, bootwu, bootliu , and bootGM6-MM were then applied to the data set.  

 

Figure 1: Residuals versus Fitted values plot of Concrete Compressive Strength data. 

The residuals versus fitted values are plotted in Figure 1 that show a funnel shape 

suggesting a heterogeneous error variances for the data. 

Table 1: Wild bootstrap standard errors of the parameters for the Concrete 
Compressive Strength data set. 

 

       BootMM-GM6 (liu)     Bootliu       Bootwu   Bootols Standard error (se) 

2.8731 24.5610 29.0002 31.8681 Intercept  

0.0009 0.0075 0.0095 0.0104 Cement 

0.0011 0.0095 0.0115 0.0123 Blast Furnace Slag 

0.0014 0.0117 0.0144 0.0153 Fly Ash 

0.0043 0.0378 0.0447 0.0487 Water 
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0.0101 0.0906 0.0986 0.1162 Super plasticizer 

0.0010 0.0089 0.0101 0.0112 Coarse Aggregate 

0.0012 0.0098 0.0117 0.0127 Fine Aggregate 

0.0006 0.0052 0.0059 0.0066 Age 

 

The standard errors of  the preceding methods based on 500 bootstrap samples are 

exhibited in Table 1. It can be observed that our proposed method gives the best result 

evident by having the smallest standard errors of the parameter estimates, followed by 

bootliu , bootwu  and bootols. 

Conclusion  

This paper examines the performance of classical wild bootstrap techniques which were 

proposed by Wu [5] and Liu [6] in the presence of heteroscedasticity and outliers. The 

numerical results show that our proposed  bootMM-GM6 outperforms the existing methods 

when both outliers and heteroscedasticity are present in the data.  
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CHAPTER 7 

New Approach to Normalization Technique in K-Means Clustering Algorithm. 

Abstract:  

The K-Means algorithm first developed in 1960's, is a popular method in cluster 

algorithms. Data preprocessing methods commonly use raw data to make the data clean, 

noise free, and consistent. This prevents larger numbers out-weighing features having 

smaller numbers. Therefore, one of the weaknesses of decimal scaling (DS) approach is 

that, it has problem of overflow, this makes the approach not robust and prone to outliers. 

We therefore, introduced a new approach normalization techniques to enhance the K-

Means algorithm. This is to remedy the problem of using decimal scaling approach, which 

has overflow weakness. Hence, the suggested approach is called new approach to 

decimal scaling (NADS). Furthermore, based on real life datasets, the performance of the 

suggested method is compared with the existing methods, which evidently indicates that 

the suggested method outperformed the existing methods with higher average maximum 

external validity measures, and lower computing time (in minutes). Consequently, the 

proposed method may be used as data preprocessing methods in distance-based 

clustering analysis. 

Keywords: Normalization, K-Means, Clustering, Validity, Preprocessing.  

1. Introduction 

Clustering is often applied as the first step in data analysis. It functions as an assessment 

to discover natural clusters in datasets to identify theoretical patterns that live inside, 

without having any primary ideas on the features of data (Mohd et al., 2012). It is an 

unsupervised arrangement method by partitioning data into clusters with main objective 

of separation, where points in the same cluster are alike, and points belong to different 

clusters differ significantly, with regard to their attributes (Mohd et al., 2012), and (Suarez-

Alvarez et al., 2012). However, it is known that data are taken as unlabeled and clustering 

is generally understood as the most important unsupervised learning assignment (Patel 

and Mehta, 2011), (Suarez-Alvarez et al., 2012). 

The K-Means is the most widely used cluster algorithm which was first developed by 

Macqueen 1967, and the algorithm was later highly-developed and expanded by Lloyd, 

in 1982. The algorithm although is very easy and strong in clustering large data sets, the 

method suffers from some setbacks (Duwairi and Abu-Rahmeh, 2015). The number of 

clusters have to be known before hand when applying to most of the real world data sets 

(Rokach and Maimon, 2014). It has to undergo issues of random selection of initial cluster 

centers (centroids), which may be sensitive to the algorithm (Barakbah and Kiyoki, 2009). 

Nonetheless, the algorithm never achieve global optimum results (Rokach and Maimon, 
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2014). The K-Means algorithm repeatedly converge to a local minimum. The issue of local 

minimum is being established on the initial cluster centers. Also, the problem of 

exploratory global minimum is nondeterministic polynomial (NP) time-complete (Oyelade 

et al., 2010). Usually, K-means algorithm continually updates cluster centers until local 

minimum is achieved. It is observed that in literature, one of the weaknesses of K-Means 

clustering algorithm is when unnormalized dataset is used, often that the outcome 

performance may not reach global optimum (Han et al., 2011). 

Data preprocessing methods commonly use raw data to make the data clean, noise free, 

and consistent (Patel and Mehta, 2011). Data normalization task is to standardize raw 

data by changing it into classified interval through linear transformation in order to 

produce good quality clusters and improve the accuracy of clustering algorithms. A 

normalized dataset is observed to produce better outcomes during the actual clustering 

process (Patel and Mehta, 2011). This prevents large numbers out weighing features 

having features with smaller numbers. The main aim is to equalize the magnitude and 

also prevent the much inconsistency in those features (Mohamad and Usman, 2013). 

 

In this study we were motivated by a problem pointed out in Visalakshi and Thangavel, 

2009, that up to date, there is no specific rule for normalizing the datasets, however, the 

researcher has open options to select whichever approach one wishes to apply. In 

addition, Wu et al., 2007, stated that the importance of normalizing validation measures 

has not been completely accepted. Also, it was stated by Aksoy and Haralick, 2001 that 

it is essential to take into consideration that distance measures like Euclidean distance 

should not be applied without preprocessing. 

This research is organized as follows: Section 2 presents materials and methods; K-

Means clustering algorithm, Decimal Scaling, and new approach to decimal scaling. 

Section 3 gives results and discussion. Section 4, some concluding remarks were given. 
 

2. Materials and Methods 

2.1.Conventional Methods 

In the literature, there are a number of conventional techniques in normalization and 

standardization, but the most common methods are min-max, decimal scaling, and Z-

score methods. However, in this paper, we are going to limit our study to decimal scaling 

normalization approach. Furthermore, we also would like to investigate the performance 

of K-Means clustering algorithm that evaluates dataset without normalization, which is 

common practice by practitioners. 
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2.1.1. K-Means Clustering Algorithm 

 

The K-means clustering algorithm consist of four steps, which are iterates until 

convergence are achieved (Mohamad and Usman, 2013). The iteration will stop when 

the clusters produced are stable, it means that there are no more movement of objects 

crossing any group. The K-Means algorithms are listed by (Macqueen, 1967), (Lloyd, 

1982), and (Shirkhorshidi et al., 2015) as follows: 

The K-Means clustering algorithm is broadly used in data mining to group data with 

similar features together. Assume data points, the algorithm distributes them into k 

groups in three stages: (1) evaluate the distances between data points with each of k 

clusters and assign the data to the nearest cluster; (2) calculate the center of each 

cluster; (3) update the clusters repeatedly until the k clusters stabilize. The aim of the 

algorithm is to minimize the cost function. The cost function: 
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2

ji cx 
 is an arbitrary distance measure between a data point x{ and the cluster 

center Cj is a sign of the distance of the n data points from their individual centers. The 

algorithm consists of the following steps (Khan, 2012):  

Step 1: Initialize the centers at random; 

Step 2: Assign data points to their respective clusters having the nearest mean; 

Step 3: Compute new centers as means of the clusters assigned in step 2; 

Step 4: Repeat steps 2 and 3 until the centers are stabilized. 

This creates a partition of the objects into groups from which the value to be minimized 

can be calculated, but after data normalization as given in Equation 2, and 3. 

2.1.2. Decimal Scaling (DS) 

Let j be a numeric attribute with n observed values nvvv ,...,, 21  (Han et al., 2011). It 

normalizes the dataset by moving the decimal point values of attribute j. The number of 

decimal points moved depends on the maximum absolute value of j. The value, vi of j is 

normalized to iv   and computed as in (Han etal., 2011): 
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Where j is the smallest integer (the integer j is equal to the maximum numbers of digits; 

example, 986, j = 3). 

 

2.1.3. New Approach to Decimal Scaling (NADS) 

The new approach to decimal scaling is formulated following the ideas of (Zumel and 

Mount, 2013), but with a slight modifications where normalization is done by replacing the 

decimal point of values of feature j with that of c + 1. The number of decimal points moved 

depends on the maximum absolute value of the attributes (Mohamad and Usman, 2013). 

The new approach to decimal scaling is calculated using the ideas from Equation 2 with 

the introduction of c + 1 to power 10 replacing the maximum absolute integer value with 

absolute real value using logarithm base 10 as follows: 
 

 110 


c

i
i

v
v

                                                       (3)       

Where,  c = log10 max(xi); if evaluated without adding 1 to c, all the variable values will be 

slightly greater than 1, which is out of bound for the upper range. Therefore, it is calculated 

based on the following conditions and rules: 

Step 1: We first compute the largest absolute value in each row using logarithm base 10 

and plus 1 each. 

Step 2: Then, divide the original row value by 10 power of this computed value to obtain 

the normalized value. It has range of [0, 1]. 

However, it is important to mention that after the transformation of data by decimal scaling 

and the proposed method, the following steps are carried out to compare the performance 

of the proposed method and the existing methods: 
 

Step 1. Perform the K-Means clustering (with unnormalized data). 

Step 2. Then, perform the K-Means clustering with the classical and the proposed 

normalization method. 

Step 3. Some external measures such as Purity, Fowlkes-Mallow Index, Rand Index, F-

Measure Score, Jaccard Index, Recall, F-Measure (beta varied), Geometric Means, 

Precision, Specificity, Accuracy, Sensitivity, and the computing time (in minutes) are 

recorded. 
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2.2. Real Data Applications 

In this section, the Iris, Hayes-Roth and Tae datasets are considered to verify the 

performance of our proposed method.  

Iris dataset: The dataset contains 3 classes of 150 sample size each, where each class 

refers to a type of iris plant. It comprises the following attributes information: (1 ) sepal 

length in cm, (2) sepal width in cm, (3) petal length in cm, and (4) petal width in cm. The 

classes are listed as follows: (1) iris Setosa, (2) iris Verisiclor, and (3) iris Virginica (Bache 

and Lichman, 2013). 

Hayes-Roth dataset: The contains 3 classes of 160 sample size each, with 4 attributes 

namely: (1) hobby, (2) age, (3) educational, and (4) marital status (Bache and Lichman, 

2013). 

Tae (Teaching Assistant Evaluation) dataset: The dataset contains 3 classes of 151 

sample size each, with 5 attributes namely: (1) native, (2) instructor, (3) course, (4) 

semester, and (5) size (Bache and Lichman, 2013). 

After data is transformed by DS, and NADS; the K-Means clustering algorithm is applied 

to the transformed data as well as the Conventional (not transformed data). The 

performance of the methods are evaluated based on the external validity measures such 

as: Purity, Fowlkes-Mallow Index, Rand Index, F-Measure Score, Jaccard Index, Recall, 

F-Measure (beta varied), Geometric Means, Precision, Specificity, Accuracy, Sensitivity, 

and the computing time (minutes) are recorded. Then, the average external validity 

measures and computing time (minutes) are computed under each distance functions, in 

order to ascertain a good normalization method that has average external validity 

measure closer to 1 or (1) at maximum, and minimum computational time. 

 

3. Results and Discussion 
 
Table 1: Average External Validity Measures and Computing Time for Iris 
Dataset 

Distance Functions Conventional Decimal Scaling NADS 

Purity 0.9072 0.9072 0.9319 
Fow. Mallow I. 0.9188 0.9174 0.9305 
Rand Index 0.9206 0.9233 0.9413 
F-Measure(Score) 0.9003 0.9052 0.9219 
Jaccard Index 0.8933 0.8933 0.9308 
Recall 0.9067 0.9069 0.9393 
F-Measure(varied) 0.9016 0.9022 0.9145 
Geometric Means 0.9045 0.9211 0.9291 
Precision 0.9038 0.9182 0.9252 
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Specificity 0.9219 0.9347 0.9472 
Accuracy 0.9137 0.9161 0.9291 
Sensitivity 0.9067 0.9069 0.9393 

Average 0.9083 0.9127 0.9317 
Com. Time 
(minutes) 

43 42  38 

 

 

Table 2: Average External Validity Measures and Computing Time for 
Hayes-Roth Dataset 

Distance Functions Conventional Decimal Scaling NADS 

Purity 0.4250 0.4309 0.4497 
Fow. Mallow I. 0.4129 0.4256 0.4384 
Rand Index 0.4375 0.4450 0.4603 
F-Measure(Score) 0.4261 0.4280 0.4391 
Jaccard Index 0.4132 0.4259 0.4395 
Recall 0.4355 0.4393 0.4453 
F-Measure(varied) 0.4152 0.4247 0.4300 
Geometric Means 0.5363 0.5483 0.5561 
Precision 0.4133 0.4141 0.4219 
Specificity 0.6171 0.6188 0.6229 
Accuracy 0.5037 0.5133 0.5290 
Sensitivity 0.4355 0.4393 0.4453 

Average 0.4559 0.4627 0.4731 
Com. Time 
(minutes) 

44 43  41 

 

 

 

Table 3: Average External Validity Measures and Computing Time for Tae 
Dataset 

Distance Functions Conventional Decimal Scaling NADS 

Purity 0.4845 0.4859 0.5203 
Fow. Mallow I. 0.5036 0.5148 0.5282 
Rand Index 0.4941 0.5032 0.5172 
F-Measure(Score) 0.5060 0.5131 0.5210 
Jaccard Index 0.4504 0.4613 0.4883 
Recall 0.5167 0.5233 0.5310 
F-Measure(varied) 0.5122 0.5244 0.5371 
Geometric Means 0.5833 0.5867 0.5987 
Precision 0.5172 0.5194 0.5264 
Specificity 0.6836 0.6866 0.6965 
Accuracy 0.6171 0.6271 0.6293 
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Sensitivity 0.5167 0.5233 0.5310 

Average 0.5321 0.5390 0.5520 
Com. Time 
(minutes) 

43 42  37 

 
Tables 1,2, and 3 present the average performance of external validity measures and 

computing time under each distance functions. However, it is important to mention some 

effect of our suggested method on clustering before detail discussion on the tables 

mentioned above. The importance of suggested normalization method like NADS is to 

eliminate redundant data and ensures that good quality clusters are evaluated which can 

enhance the efficiency of clustering algorithm. The suggested method is evaluated before 

clustering is specifically needed for distance metric like the Euclidean distance that is 

sensitive to variations within the magnitudes from the attributes. It also prevents 

outweighing features having a large number over features with smaller numbers. 

Therefore, clustering with this suggested method normalized matrices yield tighter 

(compact) and hence better clusters. 

 

It can be clearly observed from the three tables above the proposed NADS is the best 

method as it has external validity measures closest to 1 most especially in Table 1 and 

also has the lowest computational time. In Table 1, the average external validity measures 

for NADS (0.9317), Decimal Scaling (0.9127), Conventional method (0.9083), while 

computational time in minutes for NADS (38), Decimal Scaling (42), and Conventional 

method (43), respectively. Table 2, the average external validity measures for NADS 

(0.4731), Decimal Scaling (0.4627), and Conventional method (0.4559), while 

computational time in minutes for NADS (41), Decimal Scaling (43), and Conventional 

method (44), respectively. Table 3, the average external validity measures for NADS 

(0.5520), Decimal Scaling (0.5390), and Conventional method (0.5321), while 

computational time in minutes for NADS (37), Decimal Scaling (42), and Conventional 

method (43), respectively. 

 

This indicates that the performance of NADS is more accurate and efficient compared to 

the existing methods. It is evidently shown and based on this experiment that the 

conventional method without transformation give the poor results. Therefore, based on 

this real life data results, the proposed method may be used especially in distance-based 

data preprocessing clustering analysis methods in many sectors of real life situations. 
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4. Conclusion 

In this research, we proposed normalization approach to overcome attributes with initially 

large range from overweighting attributes with initially smaller ranges. The new 

normalization approach is called new approach to decimal-scaling (NADS). 

To investigate the performance of our proposed approach, real life datasets are 

considered. The results indicate that the conventional K-Means without normalization has 

the least performance. This is due to the fact that distance measures like Euclidean 

distance, should not be applied without normalization of datasets. Although, the proposed 

method has good performance; evidently, by achieving nearly maximum points in the 

average external validity measures and clustering the object points to almost all their 

cluster centers and recorded lower computing time; but, it has failed to perform very well 

in the integer-based datasets. From the results, it can be concluded that the NADS 

approach is better in the data preprocessing methods; which down weight the magnitudes 

of larger values. 
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CHAPTER 8 

The Effect of High Leverage Points on Collinearity Diagnostic 
in Logistic Regression Model 

 

  
Abstract 
 
The problem of collinearity among regressors and weighted regressors in the observed 
Fisher information matrix of maximum likelihood is examined. Both ill-conditioned 
situations inflate the estimated variances and regression coefficients. There is evident 
that the pattern of collinearity can change substantially in the presence of high leverage 
points. The existence of high leverage points creates the ambiguous understanding of 
collinear regressors and it is affecting the interpretation of model parameter estimation. 
In this article, we investigate the behavioral of high leverage points in collinear data. While 
the previous studies focusing on a common result that collinearity increase variance 
estimates, we found that under a certain condition, collinearity can reduce variance 
estimates in the presence of high leverage points. Simulation plots and real example 
illustrate the methodology. 
 
Keywords: Logistic regression, maximum likelihood, collinearity, high leverage point, 
eigenvalue, condition number   
 
 

1.0 Introduction 

 

The logistic regression using maximum likelihood (ML) estimator has been in the 

epidemiological study to model the probability of survival and the assessment of risk 

factors in diseases growth. Although the methodology of ML estimator is well developed, 

there is still lack of investigation on the model assessment in the situation when both 

collinearity and high leverage points occur together.  

 

Collinearity seriously affects the ML estimator in that the variance estimates is inflated in 

much the same way the collinearity inflates the variance estimates of Least Square (LS) 

estimator in linear regression (Månsson and Shukur, 2011). Another effect of collinearity 

is having a non-significant of Wald statistic for a single regressor while the overall model 

may be strongly significant (Lesaffre and Marx, 1993). Furthermore, collinearity may also 

result in changing signs and increase the magnitudes of estimated regression coefficients 

(Kibria et al., 2012). Moreover, collinearity introduces a near singularity in the cross 

product of regressors 𝑋𝑇𝑋 (Marx and Smith, 1990; Lesaffre and Marx, 1993). However, 

collinearity is not the only problem that involves the regressors for the logistic regression. 

Marx and Smith (1990) and Lesaffre and Marx (1993) investigated the collinearity among 
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weighted regressor in the Fisher information matrix, 𝑋𝑇𝑊𝑋  and both 𝑋𝑇𝑋 and 𝑋𝑇𝑊𝑋 

produce imprecision of ML estimates. The collinearity diagnostic procedure of Lesaffre 

and Marx (1993) can be applied to the final solution of 𝑋𝑇𝑊𝑋 and 𝑋𝑇𝑋. When applied to 

the matrix 𝑋𝑇𝑋, the collinearity diagnostic will detect near dependencies in the regressors. 

Meanwhile, the collinearity diagnostic to the matrix 𝑋𝑇𝑊𝑋 will detect near singularities in 

the weighted regressors which affect the stability of the estimated regression coefficients. 

Dependencies in the matrix 𝑋𝑇𝑋 are often associated with near singularities in 𝑋𝑇𝑊𝑋. 

However, this will not always be the case in logistic regression since singularities in 𝑋𝑇𝑋 

and 𝑋𝑇𝑊𝑋 may be dissimilar depending on how the magnitude of weights, 𝑤𝑖 vary. The 

effect of weights, 𝑤𝑖 where 𝑊 is the 𝑛 × 𝑛 diagonal matrix is found to be a factor in 

reducing or inducing ill-conditioning in 𝑋𝑇𝑊𝑋.  

 

High leverage point (HLP) which is an outlying observation in covariates space causes 

more difficulties to collinear data. The HLPs biased the estimated regression coefficients 

and obscure other observations (Ariffin and Midi, 2010). According to Bagheri et al. (2012) 

and Bagheri and Midi (2012), the presence of HLPs in collinear data are capable of 

enhancing or decreasing the effect of collinearity. Therefore, they have developed high 

leverage collinearity influential observation (HLCIO) diagnostic procedure in the linear 

regression model. 

 

The focus of this paper is to investigate the effect of HLPs on collinear data. In Section 2, 

we provide collinearity diagnostic procedure by Lesaffre and Marx (1993). Section 3 

contains simulation experiment and numerical example is exhibits in Section 4. Section 5 

offers a conclusion. 

 

2.0 Materials and Methods 

 

The logistic regression model with binary response can be formulated in link linear logit 

function 

𝒍𝒐𝒈𝒊𝒕(𝝅𝒊) = 𝒍𝒏{𝝅𝒊 (𝟏 − 𝝅𝒊)⁄ } = 𝒙𝒊
𝑻𝜷                                                (𝟏) 

or in probability of occurrence of an event (success) 

 

𝝅𝒊 = 𝒆𝒙𝒑(𝒙𝒊
𝑻𝜷) {𝟏 + 𝐞𝐱𝐩(𝒙𝒊

𝑻𝜷)}⁄                                                 (𝟐)   

where 𝒙𝒊 is the i-th row of an 𝒏 × (𝒑 + 𝟏) matrix 𝑿 with 𝒑 explanatory variables and 𝜷 is 
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a (𝒑 + 𝟏) × 𝟏 vector of  regression coefficients. The iterative maximum likelihood 
scheme for logistic regression can be expressed as: 

 

𝜷̂𝑴𝑳 = (𝑿𝑻𝑾𝑿 )−𝟏(𝑿𝑻𝑾𝒛 )                                                     (𝟑) 

where 𝑊̂ = 𝑑𝑖𝑎𝑔(𝜋𝑖(1 − 𝜋𝑖)) and 𝑧𝑖 = 𝑥𝑖
𝑇𝛽 + {𝑦𝑖 − 𝜋̂𝑖 𝜋̂𝑖(1 − 𝜋̂𝑖)⁄ }.  

 

Similar to linear regression model, collinearity diagnostic in logistic regression model is 

detected using condition indices (CI) and condition number (CN) by computing 

eigenvalues from 𝑋𝑇𝑋 and 𝑋𝑇𝑊𝑋 (Lesaffre and Marx,1993). We summarize their 

algorithm as below: 

 

Step 1: Scaling the columns of 𝑋 (including the intercept term) to unit length  

𝑥𝑖𝑗
∗ = 𝑥𝑖𝑗 ‖𝑋𝑗‖ , 𝑖 = 1, … , 𝑛 ;  𝑗 = 1, … , 𝑝.⁄

 
Step 2: Compute eigenvalues  𝜆̂0, … , 𝜆̂𝑝 from the information matrix, 𝑊̂ = (𝑋𝑇𝑊𝑋) 

and 𝑋̂ = (𝑋𝑇𝑋)  and arranged in decreasing order.
 

Step 3: Define the condition indexes of matrix 𝑊̂ and 𝑋̂ 𝜅𝑊𝑗
= (𝜆̂0 𝜆̂𝑗⁄ )

1/2
 and 𝜅𝑋𝑗

=

(𝜆̂0 𝜆̂𝑗⁄ )
1/2

. 

Step 4: Define the condition numbers of  𝜅𝑊 = 𝜆̂0 𝜆̂𝑝⁄  and 𝜅𝑋 = 𝜆̂0 𝜆̂𝑝⁄  and ratio 

𝑟𝑊𝑋 = 𝜅𝑊 𝜅𝑋⁄ .
 

Step 5: Determine whether there is an ill-conditioned in 𝑋 and ML. According to the 

threshold given by Lesaffre and Marx (1993), if 𝜅𝑋 ≥ 30, there is collinearity 
in 𝑋 , if 𝜅𝑊 ≥ 30 and 𝜅𝑋 is not high, there is  ML-collinearity. If both (≥ 30) 

and the ratio is 𝑟𝑊𝑋 ≥ 1, there are collinearity exist in both 𝑋 and ML.
 

Step 6: Calculate the variance decomposition proportion table of 𝑋̂ and 𝑊̂ to 
determine which regressor that highly correlated 
 

 

3.0 Simulation Experiment 

 

We generate the first explanatory variable 𝑥1~𝑁(0,1) from the Normal distribution. In 

order to create a collinear data, the second explanatory variables, 𝑥2 is generated in the 

form of 𝑥2 = 𝑥1 + 𝑈(0,0.1). Thus, both 𝑥1 and 𝑥2 are now highly correlated. The outcome 

variable 𝑦𝑖 are generated by comparing 𝑢~𝑈(0,1) with the true probability 𝜋(𝑥𝑖) =

𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1) (1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1))⁄  given true  𝛽 = (0,1,2) . If  𝑢 < 𝜋(𝑥𝑖), 

then 𝑦 = 1, otherwise 𝑦 = 0. The sample size is fixed for 𝑛 = 100. The data is 

contaminated by 5% of HLPs  ℎ~𝑈(10,15) where HLP are generates using Uniform 

distribution and they are allocated at the last five rows of the 𝑥2 variable. The estimation 
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of parameters using the ML estimator is repeated for 2500 times. Then, the  𝛽̂2  and the 

𝑠𝑒(𝛽̂2) for 2500 estimates for each are plotted using the histogram to show how they vary. 

Figure 1 and Figure 2 illustrate the behavioral of two estimates for three types of data (i) 

without collinearity (ii) with collinearity and (iii) with collinearity and HLPs.   

 

 

Figure 1. Histogram of 𝜷̂𝟐 for 2500 replications 
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Figure 2. Histogram of 𝒔𝒆(𝜷̂𝟐) for 2500 replications 

Figure 1 shows the histogram plot for 2500 𝛽̂2 estimates for three simulated data i.e. 

without collinearity (left side), with collinearity (middle) and colinearity in the presence of 

5% of HLPs (right side). 𝛽̂2 has a true value of 𝛽2 = 2 and the histogram plot for three 

simulated data show that the 𝛽̂2 values are centered near to 𝛽2. However, the magnitude 

of 𝛽̂2 is much larger for collinear data with the interval [-40,40] compared to without 

collinearity with the interval [1,5] and some of 𝛽̂2 also change the sign to negative. 

Surprisingly, the distribution of 𝛽̂2 estimates in collinear is drastically change in the 

presence of HLPs where the magnitude 𝛽̂2 estimates dropped from the interval [-40,40] 

to [1.5,2.5] which is not too different from the interval of 𝛽̂2 [1,5] for good data (without 

collinearity and no HLPs). Segerstedt and Nyquist (1992) mentioned that the change of 

collinear pattern is strongly related to the matrix weight  𝑊̂ = 𝑑𝑖𝑎𝑔(𝜋̂𝑖(1 − 𝜋̂𝑖)) in Eq. (3). 

They found in some cases, strong collinearity can be weakened by the weight. 

Meanwhile, Hosmer and Lemeshow (2000) showed that the observations with HLPs 

correspond to fitted probability with either large 𝜋̂𝑖 ≈ 1 or small 𝜋̂𝑖 ≈ 0. The effect of 

collinearity is seemed to be eliminated as the weights 𝑊̂ appear to be small when the 𝜋̂𝑖 

values are large or small due to the presence of HLPs. Thus, this explains why the 𝛽̂2 

estimates in both collinearity and HLPs are smaller compared to 𝛽̂2 estimates in 

collinearity. The variance estimates are larger in the simulations performed with 

collinearity with the interval [8,20] compared to without collinearity with the interval 
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[0.4,1.0] as shown in Figure 2. However, the variance estimates in both collinearity and 

HLPs reduce to the interval [0.2,1.2].  

 

 

4.0 Numerical Example 

   

Our example is on cancer remission data by Lesaffre and Marx (1993) which is taken to 

illustrate severe collinearity in logistic regression. The continuous risk factors associated 

with cancer remission are cell index (CELL), temperature (TEMP), and li index (LI). The 

binary response is 1 if the patient experiences a complete cancer remission and 0 

otherwise. There were 27 patients involved and 9 of which experienced a complete 

cancer remission. The modified cancer remission data contains two extreme HLPs on a 

temperature variable at rows 25 and 26 where the two original observations are replaced 

with values 10 and 11. Table 1 and Table 2 show the results on collinearity diagnostic for 

original and modified cancer remission data followed by the parameter estimates, as 

displayed in Table 3.  

 

 

Table 1. Collinearity Diagnostic for  

High Correlated Cancer Remission Data 

Eigenvalue Condition Index Variance Decomposition Proportion 

    Intercept LI TEMP CELL 

X'X 

3.843 1 0 0.010 0 0.003 
0.129 5.448 0 0.979 0 0.020 
0.028 11.799 0.001 0.003 0.001 0.969 

1.06E-04 190.776 0.999 0.008 0.999 0.008 

X'WX 

0.576 1 0 0.005 0 0 
0.015 6.165 0 0.454 0 0.007 

5.52E-04 32.287 0.005 0.097 0.003 0.816 
5.29E-06 329.954 0.995 0.444 0.997 0.176 
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Table 2. Collinearity Diagnostic for  

High Correlated Cancer Remission Data with HLPs 

Eigenvalue 
Condition 

Index Variance Decomposition Proportion 

    Intercept LI TEMP CELL 

X'X 

3.293 1 0.003 0.014 0.031 0.003 

0.572 2.400 0.004 0.012 0.952 0.003 

0.115 5.346 0.049 0.970 0.002 0.057 

2.06E-02 12.652 0.943 0.004 0.016 0.936 

X'WX 

0.419 1 0.001 0.015 0 0.001 

0.013 5.644 0.009 0.897 0.001 0.022 

1.07E-03 19.785 0.005 0.006 0.861 0.158 

5.89E-04 26.668 0.985 0.082 0.137 0.819 

The condition number of 𝜿𝒙 = 𝟏𝟗𝟎. 𝟕𝟕𝟔 and  𝜿𝑾 = 𝟑𝟐𝟗. 𝟗𝟓𝟒 with ratio 𝒓𝒘𝒙 = 𝟏. 𝟕𝟑 
determined the ill-conditioning in matrix 𝑿 and information matrix of ML (see Table 1). 
The variance decomposition proportion table shows the high correlation between 
temperature variable and the intercept term with correlation values 0.99 as also being 
pointed the same by Lesaffre and Marx (1993). In the presence of HLPs (see Table 2), 

the condition numbers reduce to 𝜿𝒙 = 𝟏𝟐. 𝟔𝟓𝟐 and 𝜿𝑾 = 𝟐𝟔. 𝟔𝟔𝟖. We also observe that 
the correlation between Intercept term and temperature variable is now change to cell 
variable.    

 

Table 3. Parameter Estimation of Cancer Remission Data 

  ESTIMATOR 

  ML LR WBY RLR 

Collinearity 

Intercept 67.634 (56.888) -2.99E-03 (6.76E-03) 66.745 (73.569) -3.06E-03 (6.87E-03) 

LI 3.867 (1.778) 1.34E-03 (8.43E-03) 3.818 (2.238) 1.34E-03 (8.56E-03) 

TEMP -82.074 (61.712) -2.94E-03 (6.72E-03) -80.967 (81.163) -3.02E-03 (6.82E-03) 

CELL 9.652 (7.751) -2.71E-03 (6.44E-03) 9.494 (6.497) -2.77E-03 (6.54E-03) 

Collinearity and High Leverage Points  

Intercept -8.752 (6.054) -7.07E-02 (4.90E-02) 51.425 (82.316) -6.593E-03 (1.00E-02) 

LI 2.862 (1.298) -1.07E-02 (6.08E-02) 3.631 (2.331) 4.800E-04 (1.253E-02) 

TEMP 0.716 (1.963) -6.22E-02 (5.22E-02) -62.963 (89.662) -6.501E-03 (9.986E-03) 

CELL 4.408 (5.724) -6.26E-02 (4.62E-02) 6.977 (6.705) -6.039-03 (9.483E-03) 
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On the parameter estimates, we compare the ML estimator with several estimators i.e. 
logistic ridge (LR) by Månsson and Shukur (2011), the robust weighted Bianco and 
Yohai (WBY) by Croux and Haesbroeck (2003) and robust logistic ridge (RLR) by Midi 
and Ariffin (2017). The LR estimator is expected to be the best estimator in collinear and 
uncontaminated data. Meanwhile, the WBY estimator performs the best estimates for 
non-collinear contaminated data. However, the LR and WBY estimates are no longer 
reliable for both collinear and contaminated data. Therefore, RLR estimator is proposed 
to remedy this problem. Detailed explanation of the methodology for mentioned 
estimators are not given due to the space constraint.  

The LR estimator is always expected to give the best estimates in collinear and 
uncontaminated data. Refer to Table 3, the RLR estimates are fairly close to the LR 
estimates. On the other hand, the ML and the WBY estimators fail to provide good 
estimates as they have larger values for both estimated regression coefficients and 
standard errors, while the estimated regression coefficient of Intercept and cell variable 
change sign. 

A good estimator for both collinear and contaminated data is the one that has smallest 
standard errors and estimated regression coefficients which are closest to estimates for 
the LR in collinear and uncontaminated data. As to be expected, the RLR outperforms 
other estimators in collinear and contaminated data. Even though the RLR standard 
errors are slightly larger compared to the LR standard errors in collinear and 
uncontaminated data, the RLR estimated regression coefficients are not strayed too far 
or not changing the sign. The WBY estimated regression coefficients and standard 
errors do not change much from its previous estimated regression coefficients and 
standard errors in collinear and uncontaminated data and, but they give faulty inference. 
Meanwhile, there are reductions in the standard errors using ML estimator. Although the 
ML estimator gives smaller standard errors in collinear and contaminated data 
compared to the standard errors in collinear and uncontaminated data, these estimates 
are misleading and not reliable. We also observed the sign different for estimated 
regression coefficients of temperature and cell variables. The LR also affected by the 
presence of high leverage points in correlated data, evident by having larger standard 
errors and different sign for the estimated coefficient of li variable compared to the LR 
standard errors and estimated regression coefficients in collinearity and uncontaminated 
data. 

 

5.0 Conclusion 

 

Many circumstances in logistic regression model encountered a problem of having a 

severe collinearity and high leverage points. The simulation plot and empirical result 

indicate that collinearity seriously affects the ML estimator by producing large and 

unstable estimates. The ML estimator gives a misleading conclusion on parameter 
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estimation in the presence both colinearity and HLPs, whereby the standard error of the 

ML estimates are reduced but they are not reliable. The RLR estimator offers substantial 

improvement over the ML, the WBY, and the LR estimators for the collinearity and high 

leverage points. The findings obtained from real example indicate that the RLR method 

is the best estimator.   
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CHAPTER 9  

Analysis of genetic diversity in closely related plant species using multivariate 

analyses in comparison with molecular marker evidence 

 
Abstract 
 
Knowledge on genetic diversity among the closely related plant species is important for 
species separation, breeding works, conservation and management of crop germplasm. 
A number of approaches are currently available for species identification and germplasm 
characteristics. These methods have relied on morphological studies and or in 
combination with molecular approaches. The present study focused on nine accessions 
of closely related 5 Passiflora species; i.e, Passiflora quadrangularis, Passiflora 
maliformis, Passiflora incarnata, 2 varieties of Passiflora foetida and 4 varieties of 
Passiflora edulis as an example aimed to study the purposes of multivariate analyses for 
species separation. Previous studies showed the effectiveness of floral characteristics to 
identify Passiflora species, and distinction between several closely related species was 
difficult. In order to resolve the taxonomic uncertainty, we tested a total of 43 quantitative 
characteristics (12 vegetative and 31 floral) of 715 specimens corresponding to the 
different species/varieties. Multivariate analysis of principal component (PCA) was 
employed to reduce the data sets from 43 to 26 quantitative characteristics as a selection 
criterion for species separation. The selected 26 characteristics were subjected further to 
discriminant analysis (DA) and those traits were discriminate best among the nine 
Passiflora accessions and to obtain reliable discriminant functions for provision of 
maximum separation among the species. As a result, the nine Passiflora accessions were 
clustered into five distinct groups with no overlapping between species. Hierarchical 
cluster analysis further confirmed the species separation. The classification of Passiflora 
species were further elucidated using molecular methods (ITS) and the genetic diversity 
was consistent with morphological classification. Combination of morphological traits 
using appropriate set of multivariate analyses and molecular approaches are useful for 
distinguishing the closely related Passiflora species. 
 
Keywords: Discriminant analysis (DA), hierarchical cluster analysis, multivariate 
analyses, Passiflora species, principle component analysis (PCA)  
 
 
 
 
 
Introduction 

 

Passiflora plants generally known as passion fruit may well be the most fascinating plant 
of the tropics. The Passiflora has unique flowers, usually complicated in forms, variable 
in shape, structure and colour (Ulmer & MacDougal, 2004). Passiflora plants belongs to 
the family of Passifloracea consists of 18 genera including genus Passiflora. The species 
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of the Passiflora genus have a wide range of morphological characteristics and 
anatomical differences (Krosnick & Freudenstein, 2005).  

Morphological characteristic have traditionally been the most important criteria in 
making taxonomic decisions and remain so despite of the wide uses of different molecular 
markers. The phenotypic expressions of morphological quantitative characters usually 
are determined by several genes, and different populations may remain similar 
polymorphism at many characters for a long time (Oja & Paal, 2007). According to 
Sanchez et al. (1999), Passiflora species are difficult to classify as some species vary 
widely in morphology while other species closely resemble each other. Additionally, 
existing inter- and intra-species dissimilarity among the Passiflora species makes 
understanding the link between morphological plasticity, genotypic diversity, and 
speciation challenging. A more critical situation is the fact that the external coloration 
(purple, pink red, red, yellow, orange yellow, red purple, dark purple) of the fruits are a 
character of complex inheritance and is not dominant, thus displaying a number of 
intermediate colors, making it not possible to identify (Bernacci, Soares-Scott, Junqueira, 
Passos, & Meletti, 2008). The variations in morphology were attributed to their adaptation 
to various habitats or conditions that could produce plants phenotypically different from 
their native environment.  

Multivariate methods are useful for characterization, evaluations and 

classifications of plant genetic resources when a large number of accessions are to be 

assessed for several characters of agronomic and physiological importance (Ayana & 

Bekele, 1999). The usefulness of multivariate methods for handling morphological 

variation in germplasm collections have been demonstrated in many crop plants, e.g., 

cereals include barley, maize, oat, rice and wheat. The information generated is useful 

for identifying groups of accessions that have desirable characters for crossing, for 

planning efficient germplasm collections, for revealing the pattern of variation in 

germplasm collection, for establishing core collection and investigating some aspects of 

crop evaluation (Oja & Paal, 2007; Ayana & Bekele, 1999). 

With regards to morphological variation of the Passiflora germplasm, some studies 
have been conducted in the past from various geographical locations and very little work 
has been done in Malaysia. Taxonomic studies on Passiflora are based on the 
morphology especially their flowers and fruits (Crochemore, Molinari, & Stenzel, 2003; 
Souza, Pereira, Viana, Pereira, & Madureira, 2004; Viana, Souza, Araujo, Correa, & 
Ahnert, 2010; Santos et al., 2011) leading to a classification of this genus. However, the 
above mentioned findings were based on only univariate analysis. Since the 
morphological features are the most important tools for identifying the plants and breeding 
works, the present study was conducted to determine the taxonomic rank of these species 
and to resolve the existing taxonomic confusion in this species.  

 
Materials and Methods 

Sample collection 
Plant parts from 4 Passiflora species; Passiflora maliformis, P. quadrangularis, P. 
incarnata and Passiflora edulis with 2 varieties; P. edulis (Purple) and P. edulis 
(Frederick) were collected from the cultivated passion fruit farm in UPM Campus Bintulu 
(03° 12.45' N and 113° 4.68' E), Sarawak . In addition, two other varieties of P. edulis; P. 
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edulis (Pink) and P. edulis (Yellow) were sampled from small-scale Passiflora farms at 
Kota Kinabalu (05° 58.28' N and 116° 5.72' E), Sabah and Ba’kelalan (03° 58.44' N and 
115° 37.08' E), Sarawak, respectively. Two wild cultivars of P. foetida; P. foetida (Yellow) 
and P. foetida (Orange) were collected from the bush area (03° 10.25' N and 113° 2.39' 
E) at Bintulu, Sarawak. Plant materials (Vegetative and reproductive parts) were collected 
from randomly selected plants.  
 
Morphological observation on vegetative and reproductive variables 
Fifty-one (51) quantitative and 50 qualitative data on the arils parts; leaves, stems, 
flowers, fruits and seeds (Figure 1). The variables were recorded and measured using 
ruler and Mitutoya Digimatic Vernier Caliper. The detail morphological structures were 
observed under 3D microscope (Keyence VH-S30K) and digital images of plants parts 
were captured using Olympus FE-320 digital camera. Specimen identification and 
botanical nomenclature were based on the taxonomic keys of Ulmer & MacDougal (2004). 
   
Statistical analysis and data processing 

Data on morphological variables were statistically analyzed using the SAS 9.1 for 

Windows. Single-factor analysis of variance (ANOVA) with post hoc Tukey’s test (p<0.05) 

was used to compare the mean values. Principal component analyses (PCA) based on 

Spearman correlation coefficient were performed with total of 43 characteristics Passiflora 

species (12 for vegetative and 31 for floral) is aim to reduce a large sets of variables (Abdi 

& Williams, 2010) and to check whether data reduction obtained through the new set of 

variables (PCs) revealed a pattern of variation that is consistant with grouping when 

largest component of the overall variance were contributed by differences among groups. 

Variables excluded were sepal length, peduncle length, filament width, petiole length, 

number of petals, sepals, stigma, style, anther and filament, corona length, ovary length 

and width, stigma length and width and pollen polar and equatorial diameter. Discriminant 

analysis (DA) generalization by Fisher (1936) is based on linear combinations of the 

predictor variables was used to find the maximum separation between the species. The 

predictive model of group member based on 26 quantitative characteristics of the 

variables remained after data reduction by PCA mentioned above. Clustering was carried 

out using hierarchical cluster analysis to specify the distance or similarity measure to be 

used in grouping (Jacquez, 2009) with Spearmen correlation coefficient method. The 

analyses were performed using XLSTAT 2013 for Windows (Figure 2). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jacquez%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=20234799
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Figure 1: The illustration of quantitative measurement recorded for various parts of 
Passiflora plants. Leaf length (LL) and width (LW); Petiole length (PTL) and width (PTW); 
Petiole gland length (PGL) and width (PGW); Stem width (SW); internode length (INL); 
Tendril length (TDL) and width (TDW); Stipule length (STL) and width (STW); Bract length 
(BL) and width (BW); Peducle length (PDL) and width (PDW); Flower size (FS); Series of 
corona and coronoa length (CL); Petals number, length (PL) and width (PW); Sepals 
number, length (SL) and width (SW); Stigma number, length (SGL) and width (SGW); 
Style number, length (SYL) and width (SYW); Anther number, length (AL) and width (AW); 
Filament number, length (FL) and width (FW); Ovary length (OL) and width (OW); 
Androgynophore length (AGL) and width (AGW); Pollen polar and equatorial diameter; 
Fruit length (FRL), width (FRW), fruit mass, pulp weight and rind weigth; Number of seeds 
per fruit, length (SDL) and width (SDW). 
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Figure 2: Steps of clustering and confirming the identity of the Passiflora species studied.  

 

Results and Discussion 

 

Principal component analysis (PCA)  

Principal component analysis (PCA) based on Spearman correlation coefficient was 

performed in order to evaluate morphological differentiation between species. Data 

reduction obtained through the new set of variables (PCs) revealed a pattern of variation 

that is consistent with grouping when largest components of overall variance are 

contributed by differences among species. The first three PCs of the 43 quantitative 

characteristics accounted 56.82% of the varience (31.69%, 14.11% and 11.02%, 

respectively). Although the grouping was consistent, but the total variance of first three 

principal components after factors reduction was higher (72.50%) and the 9 accessions 

studied were clustered into four groups (Figure 3a) with overlapping characters observed 

with P. edulis and P. quadrangularis. The variables with higher loading factor (>0.60) were 

chosen for the subsequences analyses. Total of 17 variables were excluded including 

sepal length, peduncle length, filament diameter, petiole length, number of petals, sepals, 

stigma, style, anther and filament, corona length, ovary length and width, stigma length 

and width and pollen polar and equatorial diameter. After the factor reduction, the first two 

PCs of the remaining 26 quantitative characteristics explained 72.50% of the total 

varience. Most of the variables were heavily loaded on the postitive axis of PC1 (Figure 

3b). 
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Figure 3: Plot of morphological parameters of the Passiflora accessions after factor 

reduction. (a) bi-plot generated by variables clustered into four groups with overlapping 

characters and (b) position of the PC score of the variables. 

 

Discriminant analysis (DA) 

Discriminant function analysis based on linear combinations of the variables produced a 

better discrimination of the Passiflora species than the PCA. We produced a scatter plot 

of 715 specimens for the first two discriminant functions based on three different sets of 

variables; a) vegetative variables alone, b) reproductive variables alone and c) combined 

both vegetative and reproductive descriptors. The DA results accounted 89.61% of the 

total variance in vegetative (Figure 4a), 85.64% in reproductive (Figure 4b) and 84.04% 

in combination of both vegetative and reproductive descriptors (Figure 4c). The biplot 

generated from combination of vegetative and reproductive descriptors after factor 

reduction from PCA were chosen with no overlapping characteristics observed showing 

five well distinct groups discriminated by morphological variables. Overlapping characters 

were observed when using vegetative or reproductive descriptors alone. 

The discriminant factors grouped the Passiflora species into five main clusters 

(Figure 4c). The specimens belonging to Group 1 comprised cultivars of P. edulis (Purple, 

Frederick, Pink and Yellow) were highly discriminated based on most of the vegetative 

variables; i.e., leaf, stem, petiole, glands on petiole, internode length, stipule, floral 

characteristics; i.e., flower size, filament and ovary length. Accordingly, with the exception 

of fruit colour and sizes, there were no significant differences (p>0.05) in morphological 

variables among P. edulis accessions. Group 2, consisting of P. quadrangularis, located 

at the positive sites of DF1 and DF2 axis, and the member of this group was highly 

discriminated by flower features. Passiflora quadrangularis produced the largest flowers 

and fruits of all analyzed species. Passiflora maliformis was clearly separated into Group 

3 and the members of this group were highly correlated with respect to bract length and 

width and style width. The bract structure of P. maliformis differed from that of other 

(a) (b) 
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species; in particular, the three bracts of this species fused together and formed large 

cups around the bud or flowers. Group 4, which was composed of P. incarnata 

accessions. The species of this group formed an independent cluster with no 

discrimination on any of the variables. The last group (Group 5) consisted of P. foetida 

(Yellow) and P. foetida (Orange). These species clearly diverged from the other Passiflora 

accessions that were located at the negative ends of DF1 and positive end of DF2 axes.  

 

Cluster analysis 
Assessment of the morphological traits clustered the species based on their 
morphological similarities is reflected in the hierarchical cluster analysis dendrogram 
(Figure 5) and confirmed with grouping using DA (Figure 4c). The dendrogram on 
Spearman correlation coefficient similarities separates all the species studied into five 
distinct groups with no overlaps. Group 1 consisted of P. edulis species, Group 2 
comprised of P. maliformis, Group 3 consisted of P. quadrangularis and Group 4 
composed of P. incarata and P. foetida clustered in Group 5. The variance composition 
for clustering was 0.26% for within class and 99.74% for between classes. The 
dendrogram shower a relative distance value varying from 1.000 to 0.583. The visual 
evaluations of the dendrogram allow the identifications of homogenous group formed by 
genotypes showing low variability. 

 
 
 
 
 
 
 
 
 
 

Figure 4: Plot of the morphological parameters of the Passiflora accessions. a) Bi-plot 
generated by vegetative variables, b) bi-plot generated floral variables and c) bi-plot 
generated by vegetative and reproductive variables. 

 
 
 



69 
 

Figure 5: Similarity cluster dendogram of Spearman Correlation Coefficient based on 

vegetative and reproductive morphological characteristics.  

 

Conclusion 

 

The morphological study provided a useful tool for identification of Passiflora species. 
This study complemented previous classification by Feuillet & MacDougal (2004) and 
contributed new information regarding the differences in traits such as firm and size. 
Multivariate analyses using PCA and DA the morphological traits could distinguished the 
Passiflora species. The classification analysis after factor reduction using PCA was very 
important for infrageneric discrimination in Passiflora species. Using DA the species 
description and separation has become more precise and the species have been clearly 
distingushed by the combination of vegetative and reproductive features. Discriminant 
analysis clustered the 9 Passiflora accessions into 5 distict groups based on their 
morphological similarities with no overlapping between the species. All the P. edulis 
sampled from various locations were clustered together in a single group based on their 
morphological similarities and with the exception of fruit color and fruit size. In addition, 
cluster analysis also further supported the species separation. The classification of 
Passiflora species were further elucidated using molecular methods (ITS) and the genetic 
diversity was consistent with morphological classification. Combination of morphological 
traits using appropriate set of multivariate analyses and molecular approaches are useful 
for distinguishing the Passiflora closely related species. 
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